Search Results
You are looking at 1 - 2 of 2 items for
- Author: G N De Iuliis x
- Refine by access: Content accessible to me x
Search for other papers by T B Smith in
Google Scholar
PubMed
Search for other papers by G N De Iuliis in
Google Scholar
PubMed
Search for other papers by T Lord in
Google Scholar
PubMed
Search for other papers by R J Aitken in
Google Scholar
PubMed
The discovery of a truncated base excision repair pathway in human spermatozoa mediated by OGG1 has raised questions regarding the effect of mutations in critical DNA repair genes on the integrity of the paternal genome. The senescence-accelerated mouse prone 8 (SAMP8) is a mouse model containing a suite of naturally occurring mutations resulting in an accelerated senescence phenotype largely mediated by oxidative stress, which is further enhanced by a mutation in the Ogg1 gene, greatly reducing the ability of the enzyme to excise 8-hydroxy,2′-deoxyguanosine (8OHdG) adducts. An analysis of the reproductive phenotype of the SAMP8 males revealed a high level of DNA damage in caudal epididymal spermatozoa as measured by the alkaline Comet assay. Furthermore, these lesions were confirmed to be oxidative in nature, as demonstrated by significant increases in 8OHdG adduct formation in the SAMP8 testicular tissue (P<0.05) as well as in mature spermatozoa (P<0.001) relative to a control strain (SAMR1). Despite this high level of oxidative DNA damage in spermatozoa, reactive oxygen species generation was not elevated and motility of spermatozoa was found to be similar to that for the control strain with the exception of progressive motility, which exhibited a slight but significant decline with advancing age (P<0.05). When challenged with Fenton reagents (H2O2 and Fe2 +), the SAMP8 spermatozoa demonstrated a highly increased susceptibility to formation of 8OHdG adducts compared with the controls (P<0.001). These data highlight the role of oxidative stress and OGG1-dependent base excision repair mechanisms in defining the genetic integrity of mammalian spermatozoa.
Search for other papers by B J Houston in
Google Scholar
PubMed
Search for other papers by B Nixon in
Google Scholar
PubMed
Search for other papers by B V King in
Google Scholar
PubMed
Search for other papers by G N De Iuliis in
Google Scholar
PubMed
Search for other papers by R J Aitken in
Google Scholar
PubMed
Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of how such non-ionising radiation influences biological systems. Therefore, we explored the documented impacts of RF-EMR on the male reproductive system and considered any common observations that could provide insights on a potential mechanism. Among a total of 27 studies investigating the effects of RF-EMR on the male reproductive system, negative consequences of exposure were reported in 21. Within these 21 studies, 11 of the 15 that investigated sperm motility reported significant declines, 7 of 7 that measured the production of reactive oxygen species (ROS) documented elevated levels and 4 of 5 studies that probed for DNA damage highlighted increased damage due to RF-EMR exposure. Associated with this, RF-EMR treatment reduced the antioxidant levels in 6 of 6 studies that discussed this phenomenon, whereas consequences of RF-EMR were successfully ameliorated with the supplementation of antioxidants in all 3 studies that carried out these experiments. In light of this, we envisage a two-step mechanism whereby RF-EMR is able to induce mitochondrial dysfunction leading to elevated ROS production. A continued focus on research, which aims to shed light on the biological effects of RF-EMR will allow us to test and assess this proposed mechanism in a variety of cell types.