Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Ratana Lim x
  • User-accessible content x
Clear All Modify Search
Free access

Ratana Lim and Martha Lappas

Preterm birth remains the largest single cause of neonatal death and morbidity. Infection and/or inflammation are strongly associated with preterm delivery. Glycogen synthase kinase 3 (GSK3) is known to be a crucial mediator of inflammation homeostasis. The aims of this study were to determine the effect of spontaneous human labour in foetal membranes and myometrium on GSK3α/β expression, and the effect of inhibition of GSK3α/β on pro-labour mediators in foetal membranes and myometrium stimulated with Toll-like receptor (TLR) ligands and pro-inflammatory cytokines. Term and preterm labour in foetal membranes was associated with significantly decreased serine phosphorylated GSK3α and β expression, and thus increased GSK3 activity. There was no effect of term labour on serine phosphorylated GSK3β expression in myometrium. The specific GSK3α/β inhibitor CHIR99021 significantly decreased lipopolysaccharide (ligand to TLR4)-stimulated pro-inflammatory cytokine gene expression and release; COX2 gene expression and prostaglandin release; and MMP9 gene expression and pro MMP9 release in foetal membranes and/or myometrium. CHIR99021 also decreased FSL1 (TLR2 ligand) and flagellin (TLR5 ligand)-induced pro-inflammatory cytokine gene expression and release and COX2 mRNA expression and prostaglandin release. GSK3 β siRNA knockdown in primary myometrial cells was associated with a significant decrease in IL1β and TNFα-induced pro-inflammatory cytokine and prostaglandin release. In conclusion, GSK3α/β activity is increased in foetal membranes after term and preterm labour. Pharmacological blockade of the kinase GSK3 markedly reduced pro-inflammatory and pro-labour mediators in human foetal membranes and myometrium, providing a possible therapeutics for the management of preterm labour.

Restricted access

Ratana Lim, Gillian Barker and Martha Lappas

Preterm birth is a prevalent cause of neonatal deaths worldwide. Inflammation has been implicated in spontaneous preterm birth involved in the processes of uterine contractility and membrane rupture. Parkinson protein 7 (PARK7) has been found to play an inflammatory role in non-gestational tissues. The aims of this study were to determine the expression of PARK7 in myometrium and fetal membranes with respect to term labour onset and to elucidate the effect of PARK7 silencing in primary myometrium and amnion cells on pro-inflammatory and pro-labour mediators. PARK7 mRNA expression was higher in term myometrium and fetal membranes from women in labour compared to non-labouring samples and in amnion from preterm deliveries with chorioamnionitis. In human primary myometrial cells transfected with PARK7 siRNA (siPARK7), there was a significant decrease in IL1B, TNF, fsl-1 and poly(I:C)-induced expression of pro-inflammatory cytokine IL6, chemokines (CXCL8, CCL2), adhesion molecule ICAM1, prostaglandin PGF and its receptor PTGFR. Similarly, amnion cells transfected with siPARK7 displayed a decrease in IL1B-induced expression of IL6, CXCL8 and ICAM1. In myometrial cells transfected with siPARK7, there was a significant reduction of NF-κB RELA transcriptional activity when stimulated with fsl-1, flagellin and poly(I:C), but not with IL1B or TNF. Collectively, our novel data describe a role for PARK7 in regulating inflammation-induced pro-inflammatory and pro-labour mediators in human myometrial and amnion cells.

Restricted access

Ratana Lim, Gillian Barker and Martha Lappas

Preterm birth continues to be the leading cause of neonatal mortality and morbidities that can extend into adult life. Few treatment options stem from our incomplete understanding of the mechanisms of human labour and delivery. Activation of the inflammatory response in gestational tissues by inflammation and/or infection leads to the production of pro-inflammatory and pro-labour mediators, thus preterm birth. Interferon regulatory factor 5 (IRF5) has recently emerged as an important pro-inflammatory transcription factor involved in acute and chronic inflammation. The aims of this study were to determine the expression of IRF5 in human myometrium from labouring and non-labouring women, and whether IRF5 is involved in the genesis of pro-inflammatory and pro-labour mediators induced by pro-inflammatory cytokines or toll-like receptor (TLR) ligands. IRF5 mRNA and protein expression was significantly higher in human myometrium after spontaneous term labour, compared to non-labouring tissues. IRF5 mRNA expression was also significantly higher in primary myometrial cells treated with the pro-inflammatory cytokines IL1B or TNF. In primary myometrial cells, IRF5 knockdown by siRNA (siIRF5) was associated with significantly decreased expression and or secretion of pro-inflammatory cytokines (IL1A, IL6), chemokines (CXCL8, CCL2), adhesion molecules (ICAM1, VCAM1) and contraction-associated proteins PTGS2, PGF and PTGFR when in the presence of IL1B, TNF, fsl-1 (TLR2/6 ligand) or flagellin (TLR5 ligand). siIRF5-transfected cells also displayed decreased NF-κB RELA transcriptional activity in the presence of these preterm birth mediators. Our study suggests a novel role for IRF5 in the regulation of the inflammatory response in human myometrium.