Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Xiaohu Zhang x
  • User-accessible content x
Clear All Modify Search
Free access

Xiao Sun, Ye Chun Ruan, Jinghui Guo, Hui Chen, Lai Ling Tsang, Xiaohu Zhang, Xiaohua Jiang and Hsiao Chang Chan

In our previous study, we have demonstrated that the epithelial sodium channel (ENaC) mediates the embryo-derived signals leading to the activation of CREB and upregulation of cyclooxygenase type 2 (COX2) required for embryo implantation. This study aims to investigate whether microRNAs (miRNAs) are involved in the ENaC-induced upregulation of COX2 during embryo implantation. The results show that the levels of miR-101 and miR-199a-3p, two COX2 targeting miRNAs, are reduced by ENaC activation, and increased by ENaC inhibition or knock-down of ENaC subunit (ENaCα) in human endometrial surface epithelial (HES) cells or in mouse uteri during implantation. Phosphorylation of CREB is induced by the activation of ENaC, and blocked by ENaC inhibition or knockdown in HES cells. Knockdown of ENaCα or CREB in HES cells or in mouse uterus in vivo results in increases in miR-101 and miR-199a-3p, accompanied with decreases in COX2 protein levels and reduction in implantation rate. The downregulation of COX2 caused by knockdown of ENaC or CREB can be recovered by the inhibitors of miR-101 or miR-199a-3p in HES cells. These results reveal a novel molecular mechanism modulating COX2 expression during embryo implantation via ENaC-dependent CREB activation and COX2-targeting miRNAs.

Free access

Ruiying Diao, Kin Lam Fok, Li Zhao, Hao Chen, Hui Tang, Jing Chen, Aiping Zheng, Xiaohu Zhang, Yaoting Gui, Hsiao Chang Chan and Zhiming Cai

Sperm quality declines with aging; however, the underlying molecular mechanism remains elusive. The cystic fibrosis transmembrane conductance regulator (CFTR) has been shown to play an essential role in fertilizing capacity of sperm and male fertility. This study aimed to investigate the involvement of age-dependent CFTR downregulation in lowering sperm quality in old age. Two hundred and one healthy fertile men of three age groups (20–40 years, n=64; 40–60 years, n=61; and >60 years, n=76) were recruited. Expression of CFTR was determined by RT-PCR, western blot, and immunofluorescence staining. Collected sperm were treated with CFTR inhibitor or potentiator. Sperm quality was assessed by motility and bicarbonate-induced capacitation. The results showed that the expression of CFTR on the equatorial segment and neck region of sperm was significantly decreased in an age-dependent manner. Reduction of CFTR expression in sperm from old men was correlated with lowered forward motility and decreased HCO3 sensitivity required for sperm capacitation. Activation of CFTR by genistein partially rescued the decreased forward motility in sperm from old men. Decreased CFTR expression in sperm was also found to be associated with lowered sperm quality in aging mice. These results suggest that age-dependent downregulation of CFTR in sperm leads to lowered sperm quality in old age sperm. CFTR may be a pontential target for rescuing sperm motility as well as a fertility indicator in old age men.

Open access

Huijuan Liao, Yan Chen, Yulong Li, Shaolong Xue, Mingfeng Liu, Ziyuan Lin, Yanyan Liu, Hsiao Chang Chan, Xiaohu Zhang and Huaqin Sun

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene affect fertility in both sexes. However, the involvement of CFTR in regulating germ cell development remains largely unknown. Here, we used zebrafish model to investigate the role of CFTR in primordial germ cells (PGCs) development. We generated a cftr frameshift mutant zebrafish line using CRISPR/Cas9 technique and investigated the migration of PGCs during early embryo development. Our results showed that loss of Cftr impairs the migration of PGCs from dome stages onward. The migration of PGCs was also perturbed by treatment of CFTRinh-172, a gating-specific CFTR channel inhibitor. Moreover, defected PGCs migration in cftr mutant embryos can be partially rescued by injection of WT but not other channel-defective mutant cftr mRNAs. Finally, we observed the elevation of cxcr4b, cxcl12a, rgs14a and ca15b, key factors involved in zebrafish PGCs migration, in cftr-mutant zebrafish embryos. Taken together, the present study revealed an important role of CFTR acting as an ion channel in regulating PGCs migration during early embryogenesis. Defect of which may impair germ cell development through elevation of key factors involved in cell motility and response to chemotactic gradient in PGCs.