Androgen, which acts via the androgen receptor (AR), plays crucial roles in mammalian ovarian function. Recent studies showed that androgen/AR signaling regulates follicle-stimulating hormone receptor (FSHR) expression in follicles; however, the detailed mechanism underlying this regulation remained unknown. Here, we demonstrate that AR and miR-126* cooperate to inhibit FSHR expression and function in pig follicular granulosa cells (pGCs). In pGCs, overexpression of AR decreased, whereas knockdown increased, FSHR mRNA and protein expression; however, neither manipulation affected FSHR promoter activity. Using a dual-luciferase reporter assay, we found that the FSHR gene is a direct target of miR-126*, which inhibits FSHR expression and increases the rate of AR-induced apoptosis in pGCs. Collectively, our data show for the first time that the AR/miR-126* axis exerts synergetic effects in the regulation of FSHR expression and apoptosis in pGCs. Our findings thus define a novel pathway, AR/miR-126*/FSHR, that regulates mammalian GC functions.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: Xing Du x
- Refine by Access: Content accessible to me x
Xing Du, Qiqi Li, Zengxiang Pan, and Qifa Li
Lifan Zhang, Xing Du, Shengjuan Wei, Dongfeng Li, and Qifa Li
As a key mediator of the transforming growth factor-beta (TGF-β) signaling pathway, which plays a pivotal role in regulating mammalian reproductive performance, Sma- and Mad-related protein 4 (SMAD4) is closely associated with the development of ovarian follicular. However, current knowledge of the genome-wide view on the role of SMAD4 gene in mammalian follicular granulosa cells (GCs) is still largely unknown. In the present study, RNA-Seq was performed to investigate the effects of SMAD4 knockdown by RNA interference (SMAD4-siRNA) in porcine follicular GCs. A total of 1025 differentially expressed genes (DEGs), including 530 upregulated genes and 495 downregulated genes, were identified in SMAD4-siRNA treated GCs compared with that treated with NC-siRNA. Furthermore, functional enrichment analysis indicated that upregulated DEGs in SMAD4-siRNA treated cells were mainly enriched in cell-cycle related processes, interferon signaling pathway, and immune system process, while downregulated DEGs in SMAD4-siRNA treated cells were mainly involved in extracellular matrix organization/disassembly, pathogenesis, and cell adhesion. In particular, cell cycle and TGF-β signaling pathway were discovered as the canonical pathways changed under SMAD4-silencing. Taken together, our data reveals SMAD4 knockdown alters the expression of numerous genes involved in key biological processes of the development of follicular GCs and provides a novel global clue of the role of SMAD4 gene in porcine follicular GCs, thus improving our understanding of regulatory mechanisms of SMAD4 gene in follicular development.