The importance of autophagy in polycystic ovary syndrome (PCOS)-related metabolic disorders is increasingly being recognized, but few studies have investigated the role of autophagy in PCOS. Here, transmission electron microscopy demonstrated that autophagy was enhanced in the ovarian tissue from both humans and rats with PCOS. Consistent with this, ovarian granulosa cells from PCOS rats showed increases in the autophagy marker protein light chain 3B (LC3B), whereas levels of the autophagy substrate SQSTM1/p62 were decreased. In addition, the ratio of LC3-II/LC3-I was markedly elevated in human PCOS ovarian tissue compared with normal ovarian tissue. Real-time PCR arrays indicated that 7 and 34 autophagy-related genes were down- and up-regulated in human PCOS , Signal-Net, and regression analysis suggested that there are a wide range of interactions among these 41 genes, and a potential network based on EGFR, ERBB2, FOXO1, MAPK1, NFKB1, IGF1, TP53 and MAPK9 may be responsible for autophagy activation in PCOS. Systematic functional analysis of 41 differential autophagy-related genes indicated that these genes are highly involved in specific cellular processes such as response to stress and stimulus, and are linked to four significant pathways, including the insulin, ERBB, mTOR signaling pathways and protein processing in the endoplasmic reticulum. This study provides evidence for a potential role of autophagy disorders in PCOS in which autophagy may be an important molecular event in the pathogenesis of PCOS.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: Xiu-Xia Wang x
- Refine by Access: Content accessible to me x
Da Li, Yue You, Fang-Fang Bi, Tie-Ning Zhang, Jiao Jiao, Tian-Ren Wang, Yi-Ming Zhou, Zi-Qi Shen, Xiu-Xia Wang, and Qing Yang
Cheng Jin, Yan Zhang, Zhi-Peng Wang, Xiu-Xia Wang, Tie-Cheng Sun, Xiao-Yu Li, Ji-Xin Tang, Jin-Mei Cheng, Jian Li, Su-Ren Chen, Shou-Long Deng, and Yi-Xun Liu
Spermatogenesis is crucial for male fertility and is therefore tightly controlled by a variety of epigenetic regulators. However, the function of enhancer of zeste homolog 2 (EZH2) in spermatogenesis and the molecular mechanisms underlying its activity remain poorly defined. Here, we demonstrate that deleting EZH2 promoted spermatogonial differentiation and apoptosis. EZH2 is expressed in spermatogonia, spermatocytes and round and elongated spermatids from stage 9 to 11 but not in leptotene and zygotene spermatocytes. Knocking down Ezh2 in vitro using a lentivirus impaired self-renewal in spermatogonial stem cells (SSCs), and the conditional knockout of Ezh2 in spermatogonial progenitors promoted precocious spermatogonial differentiation. EZH2 functions to balance self-renewal and differentiation in spermatogonia by suppressing NEUROG3 and KIT via a direct interaction that is independent of its histone methyltransferase activity. Moreover, deleting Ezh2 enhanced the activation of CASP3 in spermatids, resulting in reduced spermatozoa production. Collectively, these data demonstrate that EZH2 plays a nonclassical role in the regulation of spermatogonial differentiation and apoptosis in murine spermatogenesis.