Search Results
You are looking at 1 - 2 of 2 items for
- Author: Yanhui Zhai x
- Refine by access: Content accessible to me x
College of Animal Science, Jilin University, Changchun, Jilin, China
Search for other papers by Xiaoxiao Hou in
Google Scholar
PubMed
Search for other papers by Jun Liu in
Google Scholar
PubMed
Search for other papers by Zhiren Zhang in
Google Scholar
PubMed
Search for other papers by Yanhui Zhai in
Google Scholar
PubMed
Search for other papers by Yutian Wang in
Google Scholar
PubMed
Search for other papers by Zhengzhu Wang in
Google Scholar
PubMed
Search for other papers by Bo Tang in
Google Scholar
PubMed
Search for other papers by Xueming Zhang in
Google Scholar
PubMed
Search for other papers by Liguang Sun in
Google Scholar
PubMed
Search for other papers by Ziyi Li in
Google Scholar
PubMed
DNA methylation and histone modification play important roles in the development of mammalian embryos. Cytochalasin B (CB) is an actin polymerization inhibitor that can significantly affect cell activity and is often used in studies concerning cytology. In recent years, CB is also commonly being used in in vitro experiments on mammalian embryos, but few studies have addressed the effect of CB on the epigenetic modification of embryonic development, and the mechanism underlying this process is also unknown. This study was conducted to investigate the effects of CB on DNA methylation and histone modification in the development of parthenogenetically activated porcine embryos. Treatment with 5 μg/mL CB for 4 h significantly increased the cleavage rate, blastocyst rate and total cell number of blastocysts. However, the percentage of apoptotic cells and the expression levels of the apoptosis-related genes BCL-XL, BAX and CASP3 were significantly decreased. Treatment with CB significantly decreased the expression levels of DNMT1, DNMT3a, DNMT3b, HAT1 and HDAC1 at the pronuclear stage and promoted the conversion of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). After CB treatment, the level of AcH3K9 was upregulated and the level of H3K9me3 was downregulated. When combined with Scriptaid and 5-Aza-Cdr, CB further improved the embryonic development competence and decreased the expression of BCL-XL, BAX and CASP3. In conclusion, these results suggest that CB could improve embryonic development and the quality of the blastocyst by improving the epigenetic modification during the development of parthenogenetically activated embryos.
Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
Search for other papers by Jian Zhang in
Google Scholar
PubMed
Search for other papers by Linlin Hao in
Google Scholar
PubMed
Search for other papers by Qian Wei in
Google Scholar
PubMed
Search for other papers by Sheng Zhang in
Google Scholar
PubMed
Search for other papers by Hui Cheng in
Google Scholar
PubMed
Search for other papers by Yanhui Zhai in
Google Scholar
PubMed
Search for other papers by Yu Jiang in
Google Scholar
PubMed
Search for other papers by Xinglan An in
Google Scholar
PubMed
Search for other papers by Ziyi Li in
Google Scholar
PubMed
Search for other papers by Xueming Zhang in
Google Scholar
PubMed
Search for other papers by Bo Tang in
Google Scholar
PubMed
Somatic cell nuclear transfer (SCNT) has been successfully used for cloning in a variety of mammalian species. However, SCNT reprogramming efficiency is relatively low, in part, due to incomplete DNA methylation reprogramming of donor cell nuclei. We previously showed that ten-eleven translocation 3 (TET3) is responsible for active DNA demethylation during preimplantation embryonic development in bovines. In this study, we constructed TET3-overexpressing cell lines in vitro and observed that the use of these fibroblasts as donor cells increased the blastocyst rate by approximately 18 percentage points compared to SCNT. The overexpression of TET3 in bovine SCNT embryos caused a decrease in the global DNA methylation level of the pluripotency genes Nanog and Oct-4, ultimately resulting in an increase in the transcriptional activity of these pluripotency genes. Moreover, the quality of bovine TET3-NT embryos at the blastocyst stage was significantly improved, and bovine TET3-NT blastocysts possessed more total number of cells and fewer apoptotic cells than the SCNT blastocysts, similar to in vitro fertilization (IVF) embryos. Nevertheless, DNA methylation of the imprinting control region (ICR) for the imprinted genes H19-IGF2 in SCNT embryos remained unaffected by TET3 overexpression, maintaining parent-specific activity for further development. Thus, the results of our study provide a promising approach to rectify incomplete epigenetic reprogramming and achieve higher cloning efficiency.