Search Results

You are looking at 41 - 50 of 51 items for

  • Abstract: extracellular vesicles x
  • Abstract: intercellular communication x
  • Abstract: microparticles x
  • Abstract: ectosomes x
  • Abstract: microvesicles x
  • Abstract: exosomes x
  • All content x
Clear All Modify Search
Free access

Mian Liu, Xia Chen, Qing-Xian Chang, Rui Hua, Yan-Xing Wei, Li-Ping Huang, Yi-xin Liao, Xiao-Jing Yue, Hao-Yue Hu, Fei Sun, Si-Jia Jiang, Song Quan, and Yan-Hong Yu

Small extracellular vesicles (sEVs) are important mediators of cell-to-cell communication involved in the successful establishment of a pregnancy. Human decidual stromal cells play a key role in regulating trophoblast invasion. Nevertheless, the regulatory functions of decidual stromal cells-derived sEVs in human trophoblast cells are still unclear. In this study, primary human decidual stromal cells were isolated, and immortalized human endometrial stromal cell line (HESCs) were decidualized into human decidual stromal cells (HDSCs) using hormonal cocktail containing medroxy progesterone 17-acetate (MPA), estrogen and cAMP analog. HDSC-sEVs were isolated from both primary human decidual stromal cells and immortal HDSCs, respectively, and identified by transmission electron microscopy and western blotting. EV uptake assay indicated that HDSC-sEVs could be uptaken by trophoblast cells. HDSC-sEVs could increase the invasiveness and the expression level of N-cadherin of trophoblast cells with elevated phosphorylation of SMAD2 and SMAD3 in the cells. Silencing of N-cadherin could block cell invasion induced by HDSC-sEVs, while knockdown of SMAD2 and SMAD3 could inhibit the upregulation of N-cadherin in trophoblast cells. Taken together, our results suggested a regulatory effect of HDSC-sEVs in the invasion of trophoblast cells, and HDSC-sEVs may be important mediators of trophoblasts during embryo implantation and placentation.

Free access

Changwon Yang, Gwonhwa Song, and Whasun Lim

In humans, pregnancy maintenance depends on normal placental formation following trophoblast invasion into the endometrium and vascular remodeling. In the early stages of pregnancy, immune tolerance, inflammatory response and adaptation to hypoxia need to be precisely regulated in the placental microenvironment. Various types of cells, such as trophoblasts, endothelial cells, immune cells, mesenchymal stem cells (MSCs) and adipocytes, induce normal placental development via intercellular interactions through soluble factors. Extracellular vesicles (EVs) are used to diagnose various diseases because their constituents vary depending on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and the invasion of trophoblasts through intercellular delivery in the placental microenvironment. If the placenta does not adapt to the changed environment during early pregnancy, pregnancy disorders such as pre-eclampsia, preterm birth and gestational diabetes mellitus can occur. Thus, the important roles of EVs during pregnancy and development is fast emerging. This review describes the physiological role of EVs during placentation and their composition in the human placenta. It also suggests the possibility of finding EV markers that can diagnose pregnancy disorders. Furthermore, it describes the properties of EVs that affect pregnancy in livestock.

Free access

Mourad Assidi, Steph J Dieleman, and Marc-André Sirard


Cumulus cells (CCs) are essential for oocytes to reach full development competency and become fertilized. Many major functional properties of CCs are triggered by gonadotropins and governed by the oocyte. Consequently, cumulus may reflect oocyte quality and is often used for oocyte selection. The most visible function of CCs is their ability for rapid extracellular matrix expansion after the LH surge. Although unexplained, LH induces the final maturation and improves oocyte quality. To study the LH signaling and gene expression cascade patterns close to the germinal vesicle breakdown, bovine CCs collected at 2 h before and 6 h after the LH surge were hybridized to a custom-made microarray to better understand the LH genomic action and find differentially expressed genes associated with the LH-induced oocyte final maturation. Functional genomic analysis of the 141 overexpressed and 161 underexpressed clones was performed according to their molecular functions, gene networks, and cell compartments. Following real-time PCR validation of our gene lists, some interesting pathways associated with the LH genomic action on CCs and their possible roles in oocyte final maturation, ovulation, and fertilization are discussed. A list of early potential markers of oocyte competency in vivo and in vitro is thereafter suggested. These early biomarkers are a preamble to understand the LH molecular pathways that trigger the final oocyte competence acquisition process in bovine.

Free access

Keigo Nakamura, Kazuya Kusama, Atsushi Ideta, Kazuhiko Imakawa, and Masatoshi Hori

Extracellular vesicles (EVs) present in uterine lumen are involved in conceptus-endometrial interactions during the pre-implantation period. Despite numerous studies conducted on interferon tau (IFNT), a major protein of maternal recognition of pregnancy, the effect of intrauterine EVs on the endometrium during pre-implantation periods has not been well-characterized. To characterize conceptus-derived intrauterine EVs independent of IFNT, transcripts found from RNA-seq analysis in RNAs extracted from primary bovine endometrial epithelial cells (EECs) treated with cyclic day 17 (C17) EVs, pregnant day 17 (P17) EVs or IFNT were analyzed. These analyses identified 82 transcripts uniquely induced by IFNT-independent P17 EVs, of which a large number of transcripts were associated with ‘the TNF signaling pathway’ and ‘Inflammatory response’. Moreover, high expression of CD40L, a member of the TNF superfamily, and its receptor CD40 were found in P17 EVs and in EECs, respectively. Furthermore, the expression of TNF signaling pathway-related genes was up-regulated by the treatment with P17 EVs, but these increases were down-regulated by NF-kB signaling inhibitor. These findings suggest that P17 EVs could induce a pro-inflammatory response in the endometrium, independent of IFNT, to regulate uterine receptivity, facilitating conceptus implantation.

Free access

Marian Aalberts, Tom A E Stout, and Willem Stoorvogel

The term ‘prostasomes’ is generally used to classify the extracellular vesicles (EVs) released into prostatic fluid by prostate epithelial cells. However, other epithelia within the male reproductive tract also release EVs that mix with ‘true’ prostasomes during semen emission or ejaculation. Prostasomes have been proposed to regulate the timing of sperm cell capacitation and induction of the acrosome reaction, as well as to stimulate sperm motility where all three are prerequisite processes for spermatozoa to attain fertilising capacity. Other proposed functions of prostasomes include interfering with the destruction of spermatozoa by immune cells within the female reproductive tract. On the other hand, it is unclear whether the distinct presumed functions are performed collectively by a single type of prostasome or by separate distinct sub-populations of EVs. Moreover, the exact molecular mechanisms through which prostasomes exert their functions have not been fully resolved. Besides their physiological functions, prostasomes produced by prostate tumour cells have been suggested to support prostate cancer spread development, and prostasomes in peripheral blood plasma may prove to be valuable biomarkers for prostate cancer.

Free access

Katarzyna Joanna Szymańska, Nerea Ortiz-Escribano, Etienne Van den Abbeel, Ann Van Soom, and Luc Leybaert

Vitrification of immature germinal vesicle-stage oocytes is a promising method in assisted reproduction but is associated with reduced developmental potential and low birth rates. Cumulus-oocyte complexes (COCs) express several connexins that form hexameric hemichannels, which interact head to head to create a gap junction or exist as unopposed free hemichannels. The latter are normally closed but open under stress conditions and may exert detrimental effects. We determined whether minimizing hemichannel opening and cell death during vitrification could improve COC quality. Bovine immature COCs underwent vitrification, storage and warming, followed by dye uptake to assess hemichannel opening and TUNEL staining to detect cell death. Based on these scores, we optimized the procedure by tuning the equilibration time, temperature, cryoprotectant concentration and extracellular Ca2+ concentration and assessed its impact on maturation, cleavage and blastocyst formation after parthenogenetic activation. We found that the major stressor resides in the cooling/warming phase of the vitrification procedure and observed that hemichannel opening and cell death in cumulus cells measure different aspects of cell stress. Optimization of the hemichannel and cell death readouts demonstrated that combined minimal hemichannel opening/cell death gave the highest cleavage rates but had no effect on maturation and blastocyst formation. Neither hemichannel nor cell death optimization performed better than the non-optimized protocol, leading to the conclusion that cell stress factors other than those detected by hemichannel dye uptake or TUNEL positivity are involved.

Free access

Edwin A Mellisho, Mario A Briones, Alejandra E Velásquez, Joel Cabezas, Fidel O Castro, and Lleretny Rodríguez-Álvarez

Extracellular vesicles (EVs) secreted by blastocysts may be clinically relevant, as indicator of embryo viability on in vitro fertilization. We tested if the characteristics of EVs secreted during blastulation are related to embryo viability. Morulae were individually cultured in SOF media depleted of EVs until day 7.5 post IVF. Viable embryos were determined by a system of extended in vitro culture of bovine embryos until day 11 (post-hatching development). Afterward, a retrospective classification of blastocyst and culture media was performed based on blastulation time (early blastulation (EB) or late blastulation (LB)) and post-hatching development at day 11 (viable (V) or non-viable embryo (NV)). A total of 254 blastocysts and their culture media were classified in four groups (V-EB, NV-EB, V-LB, NV-LB). Group V-EB had a larger blastocyst diameter (170.8 μm), higher proportion of good-quality blastocysts (77%) and larger mean size of population of EVs (122.9 nm), although the highest concentration of EVs (5.75 × 109 particles/mL) were in group NV-EB. Furthermore, small RNA sequencing detected two biotypes, miRNA (86–91%) and snoRNA (9–14%), with a total of 182 and 32 respectively. In differential expression analysis of miRNAs between V versus NV blastocysts, there were 12 miRNAs upregulated and 15 miRNAs downregulated. Binary logistic regression was used to construct a non-invasive novel model to select viable embryos, based on a combination of variables of blastocyst morphokinetics and EVs characteristics, the ROC-AUC was 0.853. We concluded that characteristics of EVs secreted during blastulation vary depending on embryo quality.

Restricted access

Luiz Cordeiro, Cindy Riou, Rustem Uzbekov, and Nadine Gérard

In birds, oviductal cells play a crucial role in the storage of sperm via cell-to-cell communication including extracellular vesicles (EV). We developed a culture of oviductal organoids enriched in sperm storage tubules (SSTorg) to demonstrate the release of EV. SSTorg were cultured for 24 h and added to live (LV), frozen (FZ) and lysed (LY) avian sperm, seminal plasma (SP), avian sperm conditioned medium (CM), or bovine sperm (BV). Western blot demonstrated that SSTorg contained EV protein markers, valosin-containing protein (VCP), heat shock proteins (HSP90AA1, HSPA8), and annexins (ANXA2, A4, A5). Co-culture with LV significantly decreased the intracellular level of all these proteins except HSPA8. Immunohistochemistry confirmed this result for VCP and ANXA4. LY, CM, SP and BV had no effect on the intracellular level of these proteins, whereas FZ induced a decrease in ANXA2, A4 and A5. In culture media, VCP and HSP90AA1 signals were detected in the presence of LV, FZ, BV, LY, CM and SP, but no ANXA4 signal was observed in the presence of FZ and SP. ANXA2 and A5 were only detected in the presence of LV. The most abundant EV were less than 150 nm in diameter. ANXA4 and A5 were more abundant in EV isolated from the SSTorg culture medium. This study provides a useful culture system for studying interactions between SST cells and sperm. We demonstrated the release of EV by SSTorg in vitro, and its regulation by sperm. This may be of crucial importance for sperm during storage in hens.

Free access

S. W. Byers, D. Djakiew, and M. Dym

Summary. Epididymal epithelial fragments, free of stromal elements were isolated from mature rats using two sequential collagenase digestions. Within 24 h these attached efficiently to a variety of substrates including glass, plastic, placental collagen, type IV collagen and epididymal extracellular matrix material. Cells spreading away from the fragments rapidly assumed a flattened, overlapping, monolayer appearance typical of epithelial cells in culture. Cells still associated with the fragments or adjacent to them remained more polarized and more closely resembled epididymal principal cells in vivo than did cells that had migrated to the periphery of the monolayer. Apical microvilli characteristic of these cells in vivo were common during the first 4 days in culture but diminished in number and size thereafter. Cultured cells maintained many of the structural features characteristic of principal cells in vivo, including a well developed Golgi apparatus, coated pits and vesicles, and many multivesicular bodies. An extensive filamentous network, shown immunocytochemically to consist of keratin, was present in the cytoplasm of all cells but was more obvious in flattened cells at the periphery of the monolayer. Rhodamine phalloidin labelling of filamentous actin showed that concentrations of actin occurred corresponding to microvilli on the apical surface, in a continuous ring just below the apical surface, and also in stress fibres at the base of the cells. Cells isolated and cultured from the distal caput epididymidis possessed lobulated nuclei, in contrast to the round or oval nuclei found in cells cultured from the proximal caput epididymidis. Cells from the distal caput epididymidis were also characterized by the presence of many lipid droplets in their cytoplasm. Autofluorescent granules were observed in epithelial cells from both regions but were larger and more numerous in cells isolated from the distal caput epididymidis. Tritiated thymidine incorporation by the cells after 4 days in culture showed that cells adjacent to the parent epithelial fragment were dividing at a greater rate than cells that had migrated to the periphery of the monolayer.

Free access

Ashley I Yudin, Theodore L Tollner, Cathy A Treece, Robert Kays, Gary N Cherr, James W Overstreet, and Charles L Bevins

Surface components of sperm isolated from the cauda epididymides were stabilized by whole sperm fixation for immunization of rabbits. The resulting immunoglobulins (Igs) recognized a single protein of 130 kDa (non-reduced) or 54–57 kDa (reduced) on western blots of cauda sperm. Igs recognized the same 54–57 kDa protein band on whole tissue blots of the corpus and cauda epididymidis and vas deferens. No immunoreactive bands were detected on blots of the prostate, seminal vesicles, testes, caput epididymis, or any of various non-reproductive tissues. Removal of sperm from the vas deferens prior to blotting eliminated the detection of the sperm antigen. Antibodies raised to synthetic peptides, identical in amino acid sequence to two unique spans of DEFB22, recognized the same 130/54–57 kDa antigen on western blots of both caudal sperm and the purified antigen isolated with the anti-sperm Ig. From indirect immunofluorescence, both the anti-sperm and anti-peptide Igs appeared to localize to the entire sperm surface, a pattern confirmed at the ultrastructural level. Real-time PCR identified the corpus epididymides as the major site of expression of DEFB22, with negligible expression in the testes, caput epididymides, and vas deferens. Immunostaining of epididymal sections showed DEFB22 being released into the lumen at the distal caput/proximal corpus, with sperm becoming intensely coated with DEFB22 as they reached the distal corpus. Most uterine sperm recovered from mice 4 h following copulation exhibited DEFB22 coating the entire sperm surface. By contrast, some sperm recovered from the oviduct and cumulus extracellular matrix showed loss of DEFB22 from the sperm head.