Search Results

You are looking at 11 - 20 of 1,162 items for

  • Abstract: placenta x
  • Abstract: chorioallantoic x
  • Abstract: trophoblast x
  • Abstract: cytotrophoblast x
  • Abstract: syncytiotrophoblast x
  • Abstract: human placental lactogen x
  • Abstract: syncytium x
  • Abstract: decidualization x
  • Abstract: decidua x
  • Abstract: human chorionic gonadotropin x
  • Abstract: trophectoderm x
  • Abstract: embryo implantation x
Clear All Modify Search
Restricted access

Qianrong Qi, Yifan Yang, Kailin Wu and Qingzhen Xie

Recent studies revealed that TMEM16A is involved in several reproductive processes, including ovarian estrogen secretion and ovulation, sperm motility and acrosome reaction, fertilization and myometrium contraction. However, little is known about the expression and function of TMEM16A in embryo implantation and decidualization. In this study, we focused on the expression and regulation of TMEM16A in mouse uterus during early pregnancy. We found that TMEM16A is upregulated in uterine endometrium in response to embryo implantation and decidualization. Progesterone treatment could induce TMEM16A expression in endometrial stromal cells through progesterone receptor/c-Myc pathway, which is blocked by progesterone receptor antagonist or the inhibitor of c-Myc signaling pathway. Inhibition of TMEM16A by small molecule inhibitor (T16Ainh-A01) resulted in impaired embryo implantation and decidualization in mice. Treatment with either specific siRNA of Tmem16a or T16Ainh-A01 inhibited the decidualization and proliferation of mouse endometrial stromal cells. In conclusion, our results revealed that TMEM16A is involved in embryo implantation and decidualization in mice, compromised function of TMEM16A may lead to impaired embryo implantation and decidualization.

Free access

Jeong-Woo Kwon, Nam-Hyung Kim and Inchul Choi

Coxsackie virus and adenovirus receptor (CXADR) is a member of the immunoglobulin superfamily as well as a member of the junctional adhesion molecule family of adhesion receptor. In human pre-implantation embryos, CXADR was detected and co-localized with tight junction (TJ) proteins on the membrane of the trophectoderm. However, its physiological roles were not elucidated in terms of blastocyst formation. Here, we reported expression patterns and biological functions of CXADR in porcine pre-implantation embryos. The transcripts of CXADR were detected at all stages of pre-implantation. Particularly, its expression dramatically increased and preferentially localized at the edge of cell–cell contacts, rather than in the nucleus from the eight-cell stage onwards. CXADR expression was knocked down (KD) by microinjecting double-stranded RNA into one-cell parthenotes. The vast majority of CXADR KD embryos failed to develop to the blastocyst stage, and a few developed KD blastocysts did not expand fully. Analysis of adherens junction (AJ)- and TJ-associated genes/proteins using qRT-PCR, immunocytochemistry and assessment of TJ permeability using FITC-dextran uptake assay revealed that the developmental failure and relatively small cavities are attributed to the defects of TJ assembly. In summary, CXADR is necessary for the AJ and TJ assembly/biogenesis during pre-implantation development.

Free access

M D Saenz-de-Juano, F Marco-Jimenez, B Schmaltz-Panneau, E Jimenez-Trigos, M P Viudes-de-Castro, D S Peñaranda, L Jouneau, J Lecardonnel, R Lavara, C Naturil-Alfonso, V Duranthon and J S Vicente

Although numerous studies have demonstrated that cryopreservation alters gene expression, less is known about those embryos that implanted successfully and continued in gestation. To raise the question of the neutrality of this technique, we examine the effects of vitrification through gestation in rabbit before and after the implantation. We monitored the distribution of losses of 569 vitrified morulae, observing that embryos which reach the last pre-implantatory stage are able to implant. However, we found that not all implanted embryos had the ability to continue with their gestation. The results reveal that vitrification decreased foetus and maternal placenta weights at mid-gestation, but led to a higher offspring birth weight. A novel finding is that while no differences in gene expression were detected in pre-implantatory embryos at day 6, vitrification affects a gene and protein expression in the placenta at day 14. Our results for first time reveal strong evidence of modifications in implanted embryos subjected to vitrification, suggesting that the crucial step that vitrified embryos must overcome is the placenta formation. On the basis of these findings, our work leaves the question open as to whether the effects we observed that cause vitrification during foetal development could give rise to some type of physiological or metabolic alteration in adulthood.

Free access

Xue-Chao Tian, Qu-Yuan Wang, Dang-Dang Li, Shou-Tang Wang, Zhan-Qing Yang, Bin Guo and Zhan-Peng Yue

The aim of this study was to examine the expression and regulation of the crystallin, alpha B (Cryab) gene in mouse uterus during the peri-implantation period by in situ hybridization and real-time PCR. There was no detectable Cryab mRNA signal on days 1–4 of pregnancy. On day 5 of pregnancy when embryo implanted, a high level of Cryab mRNA signal was found in the subluminal stroma surrounding the implanting blastocyst. On days 6–8, Cryab mRNA was strongly expressed in the primary decidua. By real-time PCR, a high level of Cryab expression was detected on days 7 and 8 of pregnancy, although Cryab expression was seen from days 1 to 8. Under in vivo and in vitro artificial decidualization, Cryab expression was significantly elevated. Compared with the progesterone-primed delayed implantation uterus, a high level of Cryab mRNA expression was observed in estrogen-activated implantation uterus. In the uterine stromal cells, cAMP, estrogen, and progesterone could induce the expression of Cryab gene. In the ovariectomized mouse uterus, estrogen could also induce the expression of Cryab while progesterone inhibited its expression. Our data suggest that Cryab may play an important role during mouse embryo implantation and decidualization and that estrogen and progesterone can regulate the expression of Cryab gene.

Free access

Rebecca L Jones, Tu’uhevaha J Kaitu’u-Lino, Guiying Nie, L Gabriel Sanchez-Partida, Jock K Findlay and Lois A Salamonsen

Maternal–fetal communications are critical for the establishment of pregnancy. Embryonic growth and differentiation factors produced by the oviduct and uterus play essential roles during the pre- and early post-implantation phases. Although several studies indicate roles for activin in embryonic development, gene-knockout studies have failed to identify a critical role in mammalian embryogenesis. We hypothesized that activin is produced by maternal tissues during the establishment of pregnancy, and thus maternally derived activin could compensate for the absence of embryonic activin in null homozygotes during critical developmental stages. We investigated the expression of inhibin α, activin βA, and βB subunits in the mouse oviduct and uterus during the estrous cycle and early pregnancy, and in the early conceptus. Inhibin α subunit was weakly expressed, while activin βA and βB subunits were strongly expressed in oviduct and uterus at estrous, and dramatically upregulated in the uterus on each day of pregnancy between days 3.5 and 8.5 post coitum. Prior to implantation, activin βA and βB subunits were immunolocalized to oviductal and uterine epithelial cells; following implantation they were expressed in the stroma, in a wave preceding decidualization. Later in pregnancy, activin βA and βB subunits were present in decidua basalis, trophoblast giant cells, and labyrinth zone of the developing placenta. Expression of activin βA subunit was also detected in blastocysts and early post-implantation embryos. These data are consistent with a role for maternally derived activins in the support of the pre-implantation embryo, and during gastrulation and embryogenesis.

Free access

C Zhang, E Duan, Y Cao, G Jiang and G Zeng

Mouse embryo implantation depends on the complex interaction between the embryo trophoblast cells and the uterine environment, which deposits an extracellular matrix with abundant amounts of laminin. Intrauterine injection and blastocyst or ectoplacental cone culture models were used to study the effect of 32/67 kDa laminin-binding protein antibody on mouse embryo implantation in vivo and in vitro. Intrauterine injection of 32/67 kDa laminin-binding protein antibody (0.4 mg in 1 ml Ham's F-10 medium, 5 microl per mouse) into the left uterine horns of mice (n = 22) on day 3 of pregnancy inhibited embryo implantation significantly (P < 0.001) compared with the contralateral horns that had been injected with normal rabbit IgG. A continuous section study on day 5 after injection showed that the embryos in the control uteri implanted normally and developed healthily, but there were no embryos or the remaining embryos had disintegrated in the uteri injected with 32/67 kDa laminin-binding protein antibody. Blastocysts or ectoplacental cones were cultured in media containing 32/67 kDa laminin-binding protein antibody (0.2 mg ml(-1)) on laminin-coated dishes with normal rabbit IgG at the same concentration as in the controls. The 32/67 kDa laminin-binding protein had no effect on blastocyst or ectoplacental cone attachment, but prohibited the blastocyst or ectoplacental cone outgrowth and primary or secondary trophoblast giant cell migration. These results indicate that 32/67 kDa laminin-binding protein antibody blocked mouse embryo implantation by preventing embryo trophoblast cell invasion and migration through the uterine decidual basement membrane-like extracellular matrix which has a high laminin content.

Free access

Craig B Park and Daniel Dufort

Successful mammalian reproduction is dependent on a receptive and nurturing uterine environment. In order to establish pregnancy in humans, the uterus must i) be adequately prepared to receive the blastocyst, ii) engage in a coordinated molecular dialog with the embryo to facilitate implantation, and iii) undergo endometrial decidualization. Although numerous factors have been implicated in these essential processes, the precise network of molecular interactions that govern receptivity, embryo implantation, and decidualization remain unclear. NODAL, a morphogen in the transforming growth factor β superfamily, is well known for its critical functions during embryogenesis; however, recent studies have demonstrated an emerging role for NODAL signaling during early mammalian reproduction. Here, we review the established data and a recent wave of new studies implicating NODAL signaling components in uterine cycling, embryo implantation, and endometrial decidualization in humans and mice.

Free access

Natalie I Alexopoulos, Poul Maddox-Hyttel, Pernille Tveden-Nyborg, Nancy T D'Cruz, Tayfur R Tecirlioglu, Melissa A Cooney, Kirsten Schauser, Michael K Holland and Andrew J French

In ruminants, the greatest period of embryonic loss coincides with the period of elongation when the embryonic disc is formed and gastrulation occurs prior to implantation. The impact of early embryonic mortality is not only a major obstacle to the cattle breeding industry but also impedes the application of new reproductive technologies such as somatic cell nuclear transfer (SCNT). In the present study, days 14 and 21 bovine embryos, generated by either in vitro-production (IVP) or SCNT, performed by either subzonal injection (SUZI) or handmade cloning (HMC), were compared by stereomicroscopy, immunohistochemistry, and transmission electron microscopy to establish in vivo developmental milestones. Following morphological examination, samples were characterized for the presence of epiblast (POU5F1), mesoderm (VIM), and neuroectoderm (TUBB3). On D14, only 25, 15, and 7% of IVP, SUZI, and HMC embryos were recovered from the embryos transferred respectively, and similar low recovery rates were noted on D21, suggesting that most of the embryonic loss had already occurred by D14. A number of D14 IVP, SUZI, and HMC embryos lacked an epiblast, but presented trophectoderm and hypoblast. When the epiblast was present, POU5F1 staining was limited to this compartment in all types of embryos. At the ultrastructural level, SCNT embryos displayed abundant secondary lysosomes and vacuoles, had fewer mitochondria, polyribosomes, tight junctions, desmosomes, and tonofilaments than their IVP counterparts. The staining of VIM and TUBB3 was less distinct in SCNT embryos when compared with IVP embryos, indicating slower or compromised development. In conclusion, SCNT and to some degree, IVP embryos displayed a high rate of embryonic mortality before D14 and surviving embryos displayed reduced quality with respect to ultrastructural features and differentiation markers.

Free access

JA Stanton, AB Macgregor and DP Green

Mouse preimplantation development represents a tightly controlled programme of gene expression and cell division, which starts with the fertilized egg and ends with implantation of the blastocyst approximately 4.5 days later. Spatial and temporal differences in gene expression underpin establishment of axes at the two-cell stage and development of the trophectoderm and inner cell mass after embryo compaction at the eight-cell stage. Approximately 15 700 mouse genes expressed during preimplantation development have been identified from cDNA sequences deposited in the UniGene database of the National Institutes of Health. This inventory of preimplantation genes is the starting point for identifying signalling modules that function in preimplantation development.

Free access

Vanina Fontana, Virginia Choren, Liliana Vauthay, Juan Carlos Calvo, Lucrecia Calvo and Monica Cameo

Implantation is a crucial event in human pregnancy. The participation of cytokines in the implantation process has been widely documented, although the role of many of these molecules is still a matter of controversy. In a previous report from our laboratory, we demonstrated that addition of interferon-γ to the culture medium produces deleterious effects on mouse embryo development. In this study we investigated the effect of this cytokine on outgrowing embryo morphology and on the expression of epidermal growth factor receptors (ErbBs) and heparan sulfate proteoglycan (perlecan) in mouse embryos cultured in vitro. Morphological assessment of inner cell mass and trophoblast development was carried on in-situ fixed and stained outgrowths. Localization of ErbB1, ErbB4 and perlecan on pre- and peri-implantation embryos was investigated by immunocytochemistry. Addition of interferon-γ produced a deleterious effect on both inner cell mass and trophoblast morphology. Immunostaining demonstrated that ErbB1, ErbB4 and perlecan are present on pre-implantation embryos and blasto-cysts; interferon-γ altered the expression of ErbB4 and Perlecan at the blastocyst stage. We propose that the effects produced by this cytokine could be related to the altered acquisition of adhesion competence and low implantation rates observed in certain reproductive immunological disorders.