Search Results

You are looking at 31 - 40 of 1,162 items for

  • Abstract: placenta x
  • Abstract: chorioallantoic x
  • Abstract: trophoblast x
  • Abstract: cytotrophoblast x
  • Abstract: syncytiotrophoblast x
  • Abstract: human placental lactogen x
  • Abstract: syncytium x
  • Abstract: decidualization x
  • Abstract: decidua x
  • Abstract: human chorionic gonadotropin x
  • Abstract: trophectoderm x
  • Abstract: embryo implantation x
Clear All Modify Search
Free access

J. J. Stachecki, F. D. Yelian, R. E. Leach and D. R. Armant

This study focused on the effects of ethanol on blastocyst outgrowth and implantation in mice. Blastocysts were exposed to ethanol in Ham's F10 medium and then cultured free of ethanol on fibronectin-coated Petri dishes to assess trophoblast cell adhesion and migration. The time necessary for half of the embryos to outgrow was significantly less (P < 0.05) following treatment with 0.1%, 0.2%, 0.4% or 1.0% (w/v) ethanol for either 5 min or 24 h compared with controls. The rate of trophoblast cell migration was determined by measuring the mean area of outgrowing embryos using an image analysis system. Blastocysts exposed to ethanol for 5 min produced a greater (P < 0.05) average outgrowth area than did stage-matched controls. Acceleration of blastocyst cavitation by ethanol is known to be associated with an increase in the intracellular concentration of calcium. Here, treatment with the calcium ionophore A23187 stimulated (P < 0.05) trophoblast outgrowth and accelerated (P < 0.05) the rate of cell migration. In an attempt to correlate the effect of ethanol on outgrowth in vitro with implantation in utero, cultured blastocysts were either not exposed to ethanol or exposed to 0.1% ethanol for 5 min and transferred 24 h later to the uteri of pseudopregnant dams. The implantation rate (39.4%, n = 376) and the rate of development to term (2.45 pups per mouse, n = 20) were higher (P < 0.05) in mice receiving ethanol-treated embryos compared with those receiving control embryos (20.8%, n = 331; 1.16 pups per mouse, n = 18, respectively). The fetal survival rate of implanted embryos was not significantly different between the ethanol-treated (33.1%) and the control (30.4%) groups. These data suggest that treatment of cultured mouse blastocysts with agents that increase the intracellular calcium concentration accelerate trophoblast outgrowth in vitro and facilitate implantation in utero.

Free access

H. M. Weitlauf and M. Suda-Hartman

Summary. A dual-label ratio method was used in conjunction with two-dimensional polyacrylamide gel electrophoresis to measure the relative changes in rates of production of individual secreted proteins by mouse uteri at the start of the process of decidualization. A characteristic pattern of differential changes in the rates of synthesis and secretion of the proteins was found to be associated with development of a positive Pontamine Blue reaction at the site of embryo implantation. These changes were compared with those associated with development of experimentally induced deciduomata and although the patterns were similar, presumably reflecting common processes in transformation of the endometrium, there was preferential enhancement of a subset of small (M r 14 000–20 000) acidic proteins in the authentic implantation sites. It is suggested that this embryo-dependent modification of constitutive changes associated with decidualization reflects a form of embryo–maternal signal–response mechanism that may be important for the process of implantation in mice.

Keywords: implantation; uterine proteins; embryonic signalling; decidual reaction; mouse

Free access

Li-Juan Xiao, Jin-Xiang Yuan, Yin-Chuan Li, Rui Wang, Zhao-Yuan Hu and Yi-Xun Liu

The extracellular Ca2+-sensing receptor (CaR) is a member of the superfamily of G protein-coupled receptors (GPCRs). It is an important mediator of a wide range of Ca2+-dependent physiological responses in various tissues. In reproductive tissues it has been reported to play a significant role in promoting or maintaining placentation. Meanwhile, another Ca2+ regulated gene stanniocalcin-1 (STC-1) has been documented to be involved in decidualization and uterine remodelling. The phenomenon that CaR mediates STC-1’s transcription responding to extracellular calcium in fish urges us to suppose that CaR, like STC-1, may also play a role in implantation and decidualization. To resolve this conjecture, we have examined the expression and hormonal regulation of the CaR gene in rat uterus during peri-implantation period.

CaR mRNA was expressed at a moderate level in the luminal epithelium of the early stage of pregnancy (from day 1 to day 3). From day 2–3 it began to be expressed more strongly in the stromal cells immediately underneath the luminal epithelium, but decreased to a basal level on day 4. From day 6 to day 9 continuously, both CaR mRNA and protein were highly expressed in the primary decidua. Expression of CaR mRNA and protein in these cells was also observed when a delayed implantation was terminated by estrogen treatment to allow the embryo implantation. In contrast, only basal level expression of the molecules was detected in the cells of animals subjected to a normal-delayed implantation or the pseudopregnant condition.

Embryo transplantation experiment confirmed that CaR expression at the implantation site was induced by the implanting blastocyst. Consistent with the normal pregnant process, CaR mRNA and protein in the cells were also induced by an artificial decidualization procedure. Further experiments demonstrated that treatment of the ovariectomized rat with estrogen or/and progesterone stimulated a high level expression of CaR mRNA in the uterine epithelial and glandular epithelium. In conclusion, CaR was specifically induced during the processes of implantation and subsequent decidualization and may play a role in these processes.

Free access

Sanjoy K Das

Uterine stromal cell decidualization is integral to successful embryo implantation, which is a gateway to pregnancy establishment. This process is characterized by stromal cell proliferation and differentiation into decidual cells with polyploidy. The molecular mechanisms that are involved in these events remain poorly understood. The current concept is that locally induced factors with the onset of implantation influence uterine stromal cell proliferation and/or differentiation through modulation of core cell cycle regulators. This review will aim to address the currently available knowledge on interaction between growth factor/homeobox and cell cycle regulatory signaling in the progression of various aspects of decidualization.

Free access

Wei Lei, Heidi Nguyen, Naoko Brown, Hua Ni, Tina Kiffer-Moreira, Jeff Reese, José Luis Millán and Bibhash C Paria

Alkaline phosphatase (AP) activity has been demonstrated in the uterus of several species, but its importance in the uterus, in general and during pregnancy, is yet to be revealed. In this study, we focused on identifying AP isozyme types and their hormonal regulation, cell type, and event-specific expression and possible functions in the hamster uterus during the cycle and early pregnancy. Our RT-PCR and in situ hybridization studies demonstrated that among the known Akp2, Akp3, Akp5, and Akp6 murine AP isozyme genes, hamster uteri express only Akp2 and Akp6; both genes are co-expressed in luminal epithelial cells. Studies in cyclic and ovariectomized hamsters established that while progesterone (P4) is the major uterine Akp2 inducer, both P4 and estrogen are strong Akp6 regulators. Studies in preimplantation uteri showed induction of both genes and the activity of their encoded isozymes in luminal epithelial cells during uterine receptivity. However, at the beginning of implantation, Akp2 showed reduced expression in luminal epithelial cells surrounding the implanted embryo. By contrast, expression of Akp6 and its isozyme was maintained in luminal epithelial cells adjacent to, but not away from, the implanted embryo. Following implantation, stromal transformation to decidua was associated with induced expressions of only Akp2 and its isozyme. We next demonstrated that uterine APs dephosphorylate and detoxify endotoxin lipopolysaccharide at their sites of production and activity. Taken together, our findings suggest that uterine APs contribute to uterine receptivity, implantation, and decidualization in addition to their role in protection of the uterus and pregnancy against bacterial infection.

Free access

N Forde and P Lonergan

Establishment of pregnancy in domestic ruminants includes pregnancy recognition signalling by the conceptus, implantation and placentation. Despite the high fertilisation success rate in ruminants, a significant amount of embryo loss occurs, primarily during early gestation. Interferon-tau (IFNT), a type I interferon that is exclusively secreted by the cells of the trophectoderm of the ruminant conceptus, has been recognised as the primary agent for maternal recognition of pregnancy in ruminants. It produces its antiluteolytic effect on the corpus luteum by inhibiting the expression of oxytocin receptors in the uterine epithelial cells, which prevents pulsatile, luteolytic secretion of prostaglandin F2α by the uterine endometrium. While the importance of IFNT in maternal recognition of pregnancy and prevention of luteolysis in ruminants is unequivocal, important questions, for example, relating to the threshold level of IFNT required for pregnancy maintenance, remain unanswered. This paper reviews data linking IFNT with measures of fertility in ruminants.

Free access

T. C. Lavranos, P. D. Rathjen and R. F. Seamark

Myeloid leukaemia inhibitory factor (LIF) is expressed at highest concentrations in the maternal endometrial glands at about the stage of blastocyst implantation. LIF is also expressed by the extraembryonic membranes of the early mouse embryo. Embryos of different ages were cultured with, or without, LIF, and embryo growth in vivo and in vitro was examined to determine whether LIF is important for embryo development. Supplementing embryo culture media with 1000 U recombinant human LIF ml−1 increased the number of eight-cell mouse embryos developing beyond the hatched blastocyst stage in vitro from 62.1% to 85.1% (P < 0.05). LIF significantly increased the number of embryos hatching (33.8% versus 7.65% for controls 96 h after hCG injection, P < 0.001), completely hatching (85.1% versus 62.1%, P < 0.05), and exhibiting trophoblast outgrowth (13.5% versus 0% 120 h after hCG treatment, 85.1% versus 47.0% 144 h after hCG treatment, P < 0.001) in vitro. LIF-treated embryos also displayed a significantly greater area of trophoblast outgrowth than did controls as early as day 5 in culture (P < 0.005). These data show that LIF enhances mouse eight-cell embryo development in vitro, as seen by the accelerated rate of embryo hatching and trophoblast outgrowth. In addition, enhanced embryo survival in vivo is shown, following the transfer of LIF-treated embryos into a pseudopregnant recipient female. Expression of mRNA encoding LIF was detected in endometrial cells cultured in monolayer from uteri of day 3 pregnant females, explaining the known embryotrophic effects of endometrial coculture. This expression was not enhanced significantly by treatment with oestradiol (3.7 × 10−5 mol l−1) or progesterone (3.2 × 10−6 mol l−1) or both hormones. These results indicate that LIF could have a dual action in early embryogenesis as an embryotrophin and as a factor required for embryo implantation. Multiple roles for LIF are consistent with the expression of this factor at embryonic, extraembryonic and maternal sites during early embryogenesis.

Free access

Li Chen, Masaaki Nakai, Robert J Belton Jr and Romana A Nowak

Mouse embryo implantation is a highly invasive and controlled process that involves remodeling and degradation of the extracellular matrix of the uterus. Matrix metalloproteinases (MMPs) are the main proteinases facilitating this process. Extracellular matrix metalloproteinase inducer (EMMPRIN) can stimulate the production of MMPs and is required for successful implantation in the mouse. The aims of the present study were to examine the expression profiles of mRNA and proteins for EMMPRIN and MMPs in the developing mouse embryo in vitro, and to study whether EMMPRIN protein induces the production of MMPs by mouse blastocysts. EMMPRIN mRNA, detected by RT-PCR, was present at all stages of embryo development from the one-cell to the blastocyst outgrowth. EMMPRIN protein, observed by confocal microscopy, was present on the cell surface at the same stages of development as was the mRNA. Of seven MMPs studied, murine collagenase-like A (Mcol-A), murine collagenase-like B (Mcol-B) and gelatinase A (MMP-2) mRNAs were detected only in blastocyst outgrowths by RT-PCR. Gelatinase B (MMP-9) mRNA was detected both in expanded blastocysts and blastocyst outgrowths. MMP-2 and -9 proteins were detected in the cytoplasm of outgrowing trophoblast cells. Collagenase-2 (MMP-8), collagenase-3 (MMP-13), or stromelysin-1 (MMP-3) mRNAs were not present at any stage of pre- or peri-implantation mouse embryo development. Quantitative RT-PCR analyses showed that recombinant EMMPRIN protein did not stimulate MMP-2 or -9 expression by mouse blastocyst outgrowths. These data suggest that EMMPRIN may regulate physiological functions other than MMP production by mouse embryos during implantation.

Free access

Shinnosuke Suzuki, Yusuke Nozawa, Satoshi Tsukamoto, Takehito Kaneko, Hiroshi Imai and Naojiro Minami

SET and MYND domain-containing protein 3 (Smyd3) is a histone H3 lysine 4 (H3K4) di- and tri-methyltransferase that forms a transcriptional complex with RNA polymerase II and activates the transcription of oncogenes and cell cycle genes in human cancer cells. However, the study of Smyd3 in mammalian early embryonic development has not yet been addressed. In the present study, we investigated the expression pattern of Smyd3 in mouse preimplantation embryos and the effects of RNA interference (RNAi)-mediated Smyd3 repression on the development of mouse embryos. We showed that Smyd3 mRNA levels increased after the two-cell stage, peaked at the four-cell stage, and gradually decreased thereafter. Moreover, in two-cell to eight-cell embryos, SMYD3 staining was more intense in the nuclei than it was in the cytoplasm. In Smyd3-knockdown embryos, the percentage of inner cell mass (ICM)-derived colony formation and trophectoderm (TE)-derived cell attachment were significantly decreased, which resulted in a reduction in the number of viable offspring. Furthermore, the expression of Oct4 and Cdx2 during mid-preimplantation gene activation was significantly decreased in Smyd3-knockdown embryos. In addition, the transcription levels of ICM and epiblast markers, such as Oct4, Nanog, and Sox2, the transcription levels of primitive endoderm markers, such as Gata6, and the transcription levels of TE markers, such as Cdx2 and Eomes, were significantly decreased in Smyd3-knockdown blastocysts. These findings indicate that SMYD3 plays an important role in early embryonic lineage commitment and peri-implantation development through the activation of lineage-specific genes.

Free access

D M Baston-Buest, A Schanz, S Buest, J C Fischer, J S Kruessel and A P Hess

A successful implantation of a mammalian embryo into the maternal endometrium depends on a highly synchronized fetal–maternal dialogue involving chemokines, growth factors, and matrix-modifying enzymes. A growing body of evidence suggests an important role for proteinases playing a role in matrix degeneration and enhancing the embryo's invasive capacity and influencing the mother's immunological status in favor of the conceptus. This study focused on the expression of cathepsin S (CTSS) and its inhibitors in the murine fetal–maternal interface as well as the detection of the cellular sources of either proteinase and inhibitors. Nested RT-PCR for detection of embryonic mRNAs, immunohistochemistry of maternal and fetal tissues in B6C3F1 mice, and FACS analysis for determination of immunocompetent cell population were applied. This study shows that the cysteine proteinase CTSS is upregulated in the stroma of the implantation site, and that pregnancy induces an influx of CTSS-positive uterine natural killer cells. Compared to maternal tissues, the CTSS inhibitors cystatin F and C, but not the proteinase itself, are expressed in blastocysts. In conclusion, CTSS underlies a hormonal regulation in the maternal tissue and therewith most likely supports the embryonic implantation. The invading embryo regulates the depth of its own invasion through the expression of the cathepsin inhibitors and furthermore, interleukin-6 to activate CTSS in maternal tissues. Additionally, the observed decrease in CD3+ cells leads to the hypothesis that cells of the cytotoxic T-cell group are down-regulated in the decidua to support the implantation and ensure the survival of the embryo.