Search Results

You are looking at 1 - 10 of 1,009 items for

  • Abstract: placenta x
  • Abstract: chorioallantoic x
  • Abstract: cytotrophoblast x
  • Abstract: syncytiotrophoblast x
  • Abstract: human placental lactogen x
  • Abstract: syncytium x
  • Abstract: decidualization x
  • Abstract: decidua x
  • Abstract: human chorionic gonadotropin x
  • Abstract: trophectoderm x
  • Abstract: embryo implantation x
Clear All Modify Search
Free access

Ann C. McRae and R. B. Church

Summary. A scoring scheme was devised to characterize visually the morphological differentiation of whole-mount, unfixed mouse blastocysts. Embryos were recovered from groups of intact mice (implanting embryos) and mice ovariectomized on Day 3 of pregnancy (implantation-delayed embryos) every 3 h from 18:00 h on Day 4 until 12:00 h on Day 5. Blastocyst differentiation was assessed according to the presence of a zona pellucida, the appearance of the outer margin of trophectoderm cells, the visibility of the blastocoele and the relative size of the inner cell mass. The results obtained indicate that, during this period, implanting and implantation-delayed mouse blastocysts lose the zona as well as exhibit rounded trophectoderm cells, an enlarged inner cell mass and an increasing opacity of the blastocoele. In contrast, the trophectoderm cells of implanting blastocysts only exhibit extensive cytoplasmic projections, probably due to remodelling of the intracellular cytoskeleton. Growth of the inner cell mass appeared to precede the other morphological changes in the majority of blastocysts, and thus might be a prerequisite for further differentiation. The rate of blastocyst differentiation and the survival of embryos were adversely affected by the condition of delayed implantation, induced by ovariectomy. This study suggests that the appearance of cytoplasmic projections from trophectoderm cells is central to the control of blastocyst implantation.

Keywords: blastocyst; morphology; trophectoderm; implantation; mouse

Free access

S. Lindenberg, S. J. Kimber and E. Kallin

Summary. Mouse blastocysts bound LNF I conjugated to BSA-FITC or HSA-FITC and binding was inhibited by LNF I-HSA and to some extent by free LNF I, suggesting that the trophectoderm carries receptors specific for LNF I-like structures previously shown to be involved in implantation.

Keywords: embryo; implantation; neoglycoprotein; receptor; trophoblast, mouse

Open access

Patricia Grasa, Heidy Kaune and Suzannah A Williams

Female mice generating oocytes lacking complex N- and O-glycans (double mutants (DM)) produce only one small litter before undergoing premature ovarian failure (POF) by 3 months. Here we investigate the basis of the small litter by evaluating ovulation rate and embryo development in DM (Mgat1 F/F C1galt1 F/F:ZP3Cre) and Control (Mgat1 F/F C1galt1 F/F) females. Surprisingly, DM ovulation rate was normal at 6 weeks, but declined dramatically by 9 weeks. In vitro development of zygotes to blastocysts was equivalent to Controls although all embryos from DM females lacked a normal zona pellucida (ZP) and ∼30% lacked a ZP entirely. In contrast, in vivo preimplantation development resulted in less embryos recovered from DM females compared with Controls at 3.5 days post coitum (dpc) (3.2±1.3 vs 7.0±0.6). Furthermore, only 45% of mated DM females contained embryos at 3.5 dpc. Of the preimplantation embryos collected from DM females, approximately half were morulae unlike Controls where the majority were blastocysts, indicating delayed embryo development in DM females. Post-implantation development in DM females was analysed to determine whether delayed preimplantation development affected subsequent development. In DM females at 5.5 dpc, only ∼40% of embryos found at 3.5 dpc had implanted. However, at 6.5 dpc, implantation sites in DM females corresponded to embryo numbers at 3.5 dpc indicating delayed implantation. At 9.5 dpc, the number of decidua corresponded to embryo numbers 6 days earlier indicating that all implanted embryos progress to midgestation. Therefore, a lack of complex N- and O-glycans in oocytes during development impairs early embryo development and viability in vivo leading to delayed implantation and a small litter.

Open access

L P Sepulveda-Rincon, N Islam, P Marsters, B K Campbell, N Beaujean and W E Maalouf

It has been suggested that first embryo cleavage can be related with the embryonic–abembryonic axis at blastocyst stage in mice. Thus, cells of the 2-cell embryo might be already biased to form the inner cell mass or trophectoderm. This study was conducted to observe the possible effects of embryo biopsy on cell allocation patterns during embryo preimplantation in two different mouse strains and the effects of these patterns on further development. First, one blastomere of the 2-cell embryo was injected with a lipophilic tracer and cell allocation patterns were observed at blastocyst stage. Blastocysts were classified into orthogonal, deviant or random pattern. For the first experiment, embryos were biopsied at 8-cell stage and total cell counts (TCC) were annotated. Furthermore, non-biopsied blastocysts were transferred into foster mothers. Then, pups and their organs were weighed two weeks after birth. Random pattern was significantly recurrent (≈60%), against orthogonal (<22%) and deviant (<22%) patterns among groups. These patterns were not affected by biopsy procedure. However, TCC on deviant embryos were reduced after biopsy. Moreover, no differences were found between patterns for implantation rates, litter size, live offspring and organ weights (lungs, liver, pancreas and spleen). However, deviant pups presented heavier hearts and orthogonal pups presented lighter kidneys among the group. In conclusion, these results suggest that single blastomere removal does not disturb cell allocation patterns during pre-implantation. Nonetheless, the results suggest that embryos following different cell allocation patterns present different coping mechanisms against in vitro manipulations and further development might be altered.

Free access

LJ Xiao, HL Diao, XH Ma, NZ Ding, K Kadomatsu, T Muramatsu and ZM Yang

Basigin is essential for fertilization and implantation. The aim of this study was to determine the expression and hormonal regulation of the basigin gene in the rat uterus during the peri-implantation period. Basigin mRNA was localized strongly in the luminal epithelium on day 1 of pregnancy and gradually decreased to a basal concentration from day 3 to day 5 of pregnancy. Basigin mRNA and protein were expressed strongly in the implanting blastocyst and primary decidua on day 6 of pregnancy. A similar expression pattern was also induced in the uterus after delayed implantation was terminated by oestrogen treatment and the embryo implanted, whereas expression was not detected during delayed implantation. Basigin expression was not detected on day 6 of pseudopregnancy. Basigin mRNA was expressed strongly in the decidua on days 7 and 8 of pregnancy. Furthermore, both basigin mRNA and protein were induced in the decidua during artificial decidualization. In addition, oestrogen stimulated strong expression of basigin mRNA in the uterine epithelium of ovariectomized rats. These findings indicate that basigin may play a role during implantation and decidualization in rats.

Restricted access

Qianrong Qi, Yifan Yang, Kailin Wu and Qingzhen Xie

Recent studies revealed that TMEM16A is involved in several reproductive processes, including ovarian estrogen secretion and ovulation, sperm motility and acrosome reaction, fertilization and myometrium contraction. However, little is known about the expression and function of TMEM16A in embryo implantation and decidualization. In this study, we focused on the expression and regulation of TMEM16A in mouse uterus during early pregnancy. We found that TMEM16A is upregulated in uterine endometrium in response to embryo implantation and decidualization. Progesterone treatment could induce TMEM16A expression in endometrial stromal cells through progesterone receptor/c-Myc pathway, which is blocked by progesterone receptor antagonist or the inhibitor of c-Myc signaling pathway. Inhibition of TMEM16A by small molecule inhibitor (T16Ainh-A01) resulted in impaired embryo implantation and decidualization in mice. Treatment with either specific siRNA of Tmem16a or T16Ainh-A01 inhibited the decidualization and proliferation of mouse endometrial stromal cells. In conclusion, our results revealed that TMEM16A is involved in embryo implantation and decidualization in mice, compromised function of TMEM16A may lead to impaired embryo implantation and decidualization.

Free access

Jeong-Woo Kwon, Nam-Hyung Kim and Inchul Choi

Coxsackie virus and adenovirus receptor (CXADR) is a member of the immunoglobulin superfamily as well as a member of the junctional adhesion molecule family of adhesion receptor. In human pre-implantation embryos, CXADR was detected and co-localized with tight junction (TJ) proteins on the membrane of the trophectoderm. However, its physiological roles were not elucidated in terms of blastocyst formation. Here, we reported expression patterns and biological functions of CXADR in porcine pre-implantation embryos. The transcripts of CXADR were detected at all stages of pre-implantation. Particularly, its expression dramatically increased and preferentially localized at the edge of cell–cell contacts, rather than in the nucleus from the eight-cell stage onwards. CXADR expression was knocked down (KD) by microinjecting double-stranded RNA into one-cell parthenotes. The vast majority of CXADR KD embryos failed to develop to the blastocyst stage, and a few developed KD blastocysts did not expand fully. Analysis of adherens junction (AJ)- and TJ-associated genes/proteins using qRT-PCR, immunocytochemistry and assessment of TJ permeability using FITC-dextran uptake assay revealed that the developmental failure and relatively small cavities are attributed to the defects of TJ assembly. In summary, CXADR is necessary for the AJ and TJ assembly/biogenesis during pre-implantation development.

Free access

M D Saenz-de-Juano, F Marco-Jimenez, B Schmaltz-Panneau, E Jimenez-Trigos, M P Viudes-de-Castro, D S Peñaranda, L Jouneau, J Lecardonnel, R Lavara, C Naturil-Alfonso, V Duranthon and J S Vicente

Although numerous studies have demonstrated that cryopreservation alters gene expression, less is known about those embryos that implanted successfully and continued in gestation. To raise the question of the neutrality of this technique, we examine the effects of vitrification through gestation in rabbit before and after the implantation. We monitored the distribution of losses of 569 vitrified morulae, observing that embryos which reach the last pre-implantatory stage are able to implant. However, we found that not all implanted embryos had the ability to continue with their gestation. The results reveal that vitrification decreased foetus and maternal placenta weights at mid-gestation, but led to a higher offspring birth weight. A novel finding is that while no differences in gene expression were detected in pre-implantatory embryos at day 6, vitrification affects a gene and protein expression in the placenta at day 14. Our results for first time reveal strong evidence of modifications in implanted embryos subjected to vitrification, suggesting that the crucial step that vitrified embryos must overcome is the placenta formation. On the basis of these findings, our work leaves the question open as to whether the effects we observed that cause vitrification during foetal development could give rise to some type of physiological or metabolic alteration in adulthood.

Free access

Xue-Chao Tian, Qu-Yuan Wang, Dang-Dang Li, Shou-Tang Wang, Zhan-Qing Yang, Bin Guo and Zhan-Peng Yue

The aim of this study was to examine the expression and regulation of the crystallin, alpha B (Cryab) gene in mouse uterus during the peri-implantation period by in situ hybridization and real-time PCR. There was no detectable Cryab mRNA signal on days 1–4 of pregnancy. On day 5 of pregnancy when embryo implanted, a high level of Cryab mRNA signal was found in the subluminal stroma surrounding the implanting blastocyst. On days 6–8, Cryab mRNA was strongly expressed in the primary decidua. By real-time PCR, a high level of Cryab expression was detected on days 7 and 8 of pregnancy, although Cryab expression was seen from days 1 to 8. Under in vivo and in vitro artificial decidualization, Cryab expression was significantly elevated. Compared with the progesterone-primed delayed implantation uterus, a high level of Cryab mRNA expression was observed in estrogen-activated implantation uterus. In the uterine stromal cells, cAMP, estrogen, and progesterone could induce the expression of Cryab gene. In the ovariectomized mouse uterus, estrogen could also induce the expression of Cryab while progesterone inhibited its expression. Our data suggest that Cryab may play an important role during mouse embryo implantation and decidualization and that estrogen and progesterone can regulate the expression of Cryab gene.

Free access

M G Martínez-Hernández, L A Baiza-Gutman, A Castillo-Trápala and D Randall Armant

Trophoblast cells express urokinase-type plasminogen activator (PLAU) and may depend on its activity for endometrial invasion and tissue remodeling during peri-implantation development. However, the developmental regulation, tissue distribution, and function of PLAU are not completely understood. In this study, the expression of PLAU and its regulation by extracellular matrix proteins was examined by RT-PCR, immunocytochemistry, and plasminogen–casein zymography in cultured mouse embryos. There was a progressive increase in Plau mRNA expression in blastocysts cultured on gestation days 4–8. Tissue-type plasminogen activator (55 kDa) and PLAU (a triplet of 40, 37, and 31 kDa) were present in conditioned medium and embryo lysates, and were adsorbed to the culture plate surface. The temporal expression pattern of PLAU, according to semi-quantitative gel zymography, was similar in non-adhering embryos and embryos cultured on fibronectin, laminin, or type IV collagen, although type IV collagen and laminin upregulated Plau mRNA expression. Immunofluorescence revealed PLAU on the surface of the mural trophectoderm and in non-spreading giant trophoblast cells. Exogenous human plasminogen was transformed to plasmin by cultured embryos and activated endogenous matrix metalloproteinase 9 (MMP9). Indeed, the developmental expression profile of MMP9 was similar to that of PLAU. Our data suggest that the intrinsic developmental program predominantly regulates PLAU expression during implantation, and that PLAU could be responsible for activation of MMP9, leading to localized matrix proteolysis as trophoblast invasion commences.