Search Results

You are looking at 21 - 30 of 232 items for

  • Abstract: stem cells x
  • Abstract: pluripoten* x
  • Abstract: totipotent x
Clear All Modify Search
Free access

Bibiana Correia, Maria Inês Sousa and João Ramalho-Santos

Reproduction depends on many factors, from gamete quality to placenta formation, to fetal development. The mTOR pathway is emerging as a major player that integrates several cellular processes in response to a variety of environmental cues that are relevant in many aspects of reproduction. This review provides a general overview, summarizing the involvement of the two mTOR complexes (mTORC1 and mTORC2) in integrating signaling pathways, sensing environmental status, and managing physiological processes inherent to successful reproductive outcomes and pluripotent stem cell function. As a well-known governor of multiple cellular functions, it is not surprising that mTOR has a key regulatory role in determining cell quiescence or differentiation. In the gonads mTOR helps maintain spermatogonial stem cell and follicle identity and tightly regulates differentiation in both systems to ensure proper gamete production. The mTOR pathway is also known to prevent premature follicle exhaustion, while also controlling the blood–testis barrier in the male gonad. In stem cells mTOR again seems to have a role in controlling both pluripotency and differentiation, mirrored by its in vivo roles in the embryo, notably in regulating diapause. Finally, although there are clearly more complex systems intertwined in placental function, mTOR seems to serve as an early checkpoint for development progression and successful implantation.

Free access

Sandeep Goel, Mayako Fujihara, Naojiro Minami, Masayasu Yamada and Hiroshi Imai

Gonocytes are primitive germ cells that are present in the neonatal testis and are committed to male germline development. Gonocytes differentiate to spermatogonia, which establish and maintain spermatogenesis in the postnatal testis. However, it is unknown whether large animal species have pluripotency-specific proteins in the testis. Nanog and Pou5f1 (Oct3/4) have been identified as transcription factors essential for maintaining pluripotency of embryonic stem cells in mice. Here, we show that NANOG protein was expressed in the germ cells of neonatal pig testes, but was progressively lost with age. NANOG was expressed in most of the lectin Dolichos biflorus agglutinin- and ZBTB16-positive gonocytes, which are known gonocyte-specific markers in pigs. NANOG was also expressed in Sertoli and interstitial cells of neonatal testes. Interestingly, POU5F1 expression was not detected at either the transcript or the protein level in neonatal pig testis. In the prepubertal testis, NANOG and POU5F1 proteins were primarily detected in differentiated germ cells, such as spermatocytes and spermatids, and rarely in undifferentiated spermatogonia. By using a testis transplantation assay, we found that germ cells from 2- to 4-day-old pigs could colonize and proliferate in the testes of the recipient mice, suggesting that primitive germ cells from neonatal pig testes have stem cell potential.

Free access

Chao Wei, Xia Li, Pengfei Zhang, Yu Zhang, Tong Liu, Shaoshuai Jiang, Fei Han and Yunhai Zhang

Partially reprogrammed induced pluripotent stem cells (PiPSCs) have great potential for investigating reprogramming mechanisms and represent an alternative potential material for making genetically modified animals and regenerative medicine. To date, PiPSCs have scarcely been reported in detail when compared with mice and humans. In this study, we obtained PiPSCs from porcine adipose-derived stem cells (pADSCs) by ectopic expression of human transcription factors (OCT4, SOX2, c-MYC, and KLF4) in feeder-free condition. The morphology and proliferation activity of porcine PiPSCs (pPiPSCs) were similar to those of porcine fully reprogrammed iPSCs (pFiPSCs); furthermore, pPiPSCs expressed higher levels of the typical surface molecules (CD29) found in pADSCs. However, pPiPSCs were negative for key proteins (NANOG) connected with stemness and possessed lower differentiation ability in vivo and in vitro. When differentiation-inhibiting factors were withdrawn, pPiPSCs-derived cells (pPiPSC-DCs) showed similar features to pADSCs in many aspects, including proliferation, differentiation, and immunosuppression. When both types of cells were used to produce cloned embryos, we found that the blastocyst formation rate of 19DC (one of the pPiPSC-DC cell lines)-derived cloned embryos was obviously higher than that of others. The total cell number of 19DC-derived blastocysts was significantly higher than the 30DC (one pFiPSC-DC cell line)-derived blastocysts. In all, through limited differentiation ability, the proliferation activity of pPiPSCs is similar to that of pFiPSCs, and pPiPSCs can retain several of the features of pADSCs, which are beneficial to cell therapy. Furthermore, the differentiation of pPiPSCs is more favorable for producing high-quality reconstructed embryos.

Free Chinese abstract: A Chinese translation of this abstract is freely available at

Free access

A Miranda, P Ramos-Ibeas, E Pericuesta, M A Ramirez and A Gutierrez-Adan

Cellular prion protein (PrPC) has been well described as an essential partner of prion diseases due to the existence of a pathological conformation (PrPSc). Recently, it has also been demonstrated that PrPC is an important element of the pluripotency and self-renewal matrix, with an increasing amount of evidence pointing in this direction. Here, we review the data that demonstrate its role in the transcriptional regulation of pluripotency, in the differentiation of stem cells into different lineages (e.g. muscle and neurons), in embryonic development, and its involvement in reproductive cells. Also highlighted are recent results from our laboratory that describe an important regulation by PrPC of the major pluripotency gene Nanog. Together, these data support the appearance of new strategies to control stemness, which could represent an important advance in the field of regenerative medicine.

Free access

Maaike P A van Bragt, Hermien L Roepers-Gajadien, Cindy M Korver, Jan Bogerd, Akihiko Okuda, Bart J L Eggen, Dirk G de Rooij and Ans M M van Pelt

The population of early A spermatogonia includes stem cells that possess spermatogonial stem cell properties. Recent reports suggest that these cells have the ability to regain pluripotent properties. Here, we show that expression of the pluripotency marker undifferentiated embryonic cell transcription factor 1 (UTF1) is restricted to distinct germ cells within the testis. In embryonic and neonatal testes, all gonocytes were found to strongly express UTF1. During further testicular development, expression of UTF1 was restricted to a subset of A spermatogonia and with the increase in age the number of cells expressing UTF1 decreased even more. Ultimately, in the adult rat testis, only a small subset of the A spermatogonia expressed UTF1. Remarkably, even in testes of vitamin A-deficient rats, in which the early A spermatogonia (As, Apr, and Aal) are the only type of spermatogonia, only a subset of the spermatogonia expressed UTF1. In the adult rat testis, expression of UTF1 is restricted to a subpopulation of the ZBTB16 (PLZF)-positive early A spermatogonia. Furthermore, the observed distribution pattern of UTF1-expressing cells over the different stages of the cycle of the seminiferous epithelium suggests that the expression of UTF1 is restricted to those As, Apr, and short chains of Aal spermatogonia that are in the undifferentiated state and therefore maintain the ability to differentiate into A1 spermatogonia in the next round of the epithelial cycle or possibly even in other directions when they are taken out of their testicular niche.

Free access

Mitinori Saitou and Masashi Yamaji

The specification of germ cell fate in development initiates mechanisms essential for the perpetuation of genetic information across the generations. Recent studies in mice have shown that germ cell specification requires at least three key molecular/cellular events: repression of the somatic program, re-acquisition of potential pluripotency, and an ensuing genome-wide epigenetic reprogramming. Moreover, a signaling and transcriptional principle governing these processes has been identified, raising the possibility of inducing the germ cell fate precisely from pluripotent stem cells in culture. These advances will in turn serve as a basis to explore the mechanism of germ cell specification in other mammals, including humans. The recapitulation of germ cell development in humans in culture will provide unprecedented opportunities to understand the basis of the propagation of our genome, both under normal and diseased conditions.

Free access

Joëlle A Desmarais, Simon-Pierre Demers, Joao Suzuki Jr, Simon Laflamme, Patrick Vincent, Sheila Laverty and Lawrence C Smith

Although putative horse embryonic stem (ES)-like cell lines have been obtained recently from in vivo-derived embryos, it is currently not known whether it is possible to obtain ES cell (ESC) lines from somatic cell nuclear transfer (SCNT) and parthenogenetic (PA) embryos. Our aim is to establish culture conditions for the derivation of autologous ESC lines for cell therapy studies in an equine model. Our results indicate that both the use of early-stage blastocysts with a clearly visible inner cell mass (ICM) and the use of pronase to dissect the ICM allow the derivation of a higher proportion of primary ICM outgrowths from PA and SCNT embryos. Primary ICM outgrowths express the molecular markers of pluripotency POU class 5 homeobox 1 (POU5F1) and (sex determining region-Y)-box2 (SOX2), and in some cases, NANOG. Cells obtained after the passages of PA primary ICM outgrowths display alkaline phosphatase (AP) activity and POU5F1, SOX2, caudal-related homeobox-2 (CDX2) and eomesodermin (EOMES) expression, but may lose NANOG. Cystic embryoid body-like structures expressing POU5F1, CDX2 and EOMES were produced from these cells. Immunohistochemical analysis of equine embryos reveals the presence of POU5F1 in trophectoderm, primitive endoderm and ICM. These results suggest that cells obtained after passages of primary ICM outgrowths are positive for trophoblast stem cell markers while expressing POU5F1 and displaying AP activity. Therefore, these cells most likely represent trophoblast cells rather than true ESCs. This study represents an important first step towards the production of autologous equine ESCs for pre-clinical cell therapy studies on large animal models.

Free access

Franchesca D Houghton

Gap junctional communication plays a central role in the maintenance of cellular homeostasis by allowing the passage of small molecules between adjacent cells. Gap junctions are composed of a family of proteins termed connexins. During preimplantation development several connexin proteins are expressed and assembled into gap junctions in the plasma membrane at compaction but the functional significance of connexin diversity remains controversial. Although, many of the connexin genes have been disrupted using homologous recombination in embryonic stem cells to obtain unique phenotypes, none of these studies has demonstrated a specific role for connexins during preimplantation development in the null mutants. This review surveys evidence for the involvement of gap junctional communication during embryo development highlighting discrepancies in the literature. Although some evidence suggests that gap junctions may be dispensable during preimplantation development this is difficult to envisage particularly for the process of cavitation and the maintenance of homeostasis between the differentiated trophectoderm cells and the pluripotent inner cell mass cells of the blastocyst.

Free access

Chanchao Lorthongpanich, Shang-Hsun Yang, Karolina Piotrowska-Nitsche, Rangsun Parnpai and Anthony W S Chan

The recently developed technique of establishing embryonic stem (ES) cell lines from single blastomeres (BTMs) of early mouse and human embryos has created significant interest in this source of ES cells. However, sister BTMs of an early embryo might not have equal competence for the development of different lineages or the derivation of ES cells. Therefore, single BTMs from two- and four-cell embryos of outbred mice were individually placed in sequential cultures to enhance the formation of the inner cell mass (ICM) and the establishment of embryonic outgrowth. The outgrowths were then used for the derivation of ES cell lines. Based on the expression of ICM (Sox2) and trophectoderm (Cdx2) markers, it was determined that ICM marker was lacking in blastocysts derived from 12% of BTMs from two-cell stage and 20% from four-cell stage. Four ES cell lines (5.6%; 4/72) were established ater culture of single BTMs from two-cell embryos, and their pluripotency was demonstrated by their differentiation into neuronal cell types. Our results demonstrate that sister BTMs of an early embryo are not equally competent for ICM marker expression. However, we demonstrated the feasibility of establishing ES cells from a single BTM of outbred mice.

Free access

S Albert, J Ehmcke, J Wistuba, K Eildermann, R Behr, S Schlatt and J Gromoll

The seminiferous epithelium in the nonhuman primate Callithrix jacchus is similarly organized to man. This monkey has therefore been used as a preclinical model for spermatogenesis and testicular stem cell physiology. However, little is known about the developmental dynamics of germ cells in the postnatal primate testis. In this study, we analyzed testes of newborn, 8-week-old, and adult marmosets employing immunohistochemistry using pluripotent stem cell and germ cell markers DDX4 (VASA), POU5F1 (OCT3/4), and TFAP2C (AP-2 γ). Stereological and morphometric techniques were applied for quantitative analysis of germ cell populations and testicular histological changes. Quantitative RT-PCR (qRT-PCR) of testicular mRNA was applied using 16 marker genes establishing the corresponding profiles during postnatal testicular development. Testis size increased during the first 8 weeks of life with the main driver being longitudinal outgrowth of seminiferous cords. The number of DDX4-positive cells per testis doubled between birth and 8 weeks of age whereas TFAP2C- and POU5F1-positive cells remained unchanged. This increase in DDX4-expressing cells indicates dynamic growth of the differentiated A-spermatogonial population. The presence of cells expressing POU5F1 and TFAP2C after 8 weeks reveals the persistence of less differentiated germ cells. The mRNA and protein profiles determined by qRT-PCR and western blot in newborn, 8-week-old, and adult marmosets corroborated the immunohistochemical findings. In conclusion, we demonstrated the presence of distinct spermatogonial subpopulations in the primate testis exhibiting different dynamics during early testicular development. Our study demonstrates the suitability of the marmoset testis as a model for human testicular development.