Search Results

You are looking at 11 - 14 of 14 items for

  • Author: Hui Wang x
Clear All Modify Search
Free access

Hui-Li Yang, Wen-Jie Zhou, Kai-Kai Chang, Jie Mei, Li-Qing Huang, Ming-Yan Wang, Yi Meng, Si-Yao Ha, Da-Jin Li and Ming-Qing Li

The dysfunction of NK cells in women with endometriosis (EMS) contributes to the immune escape of menstrual endometrial fragments refluxed into the peritoneal cavity. The reciprocal communications between endometrial stromal cells (ESCs) and lymphocytes facilitate the development of EMS. However, the mechanism of these communications on cytotoxicity of natural killer (NK) cells in endometriotic milieus is still largely unknown. To imitate the local immune microenvironment, the co-culture systems of ESCs from patients with EMS and monocyte-derived macrophages or of ESCs, macrophages and NK cells were constructed. The cytokine levels in the co-culture unit were evaluated by ELISA. The expression of functional molecules in NK cells was detected by flow cytometry (FCM). The NK cell behaviors in vitro were analyzed by cell counting kit-8 and cytotoxic activation assays. After incubation with ESCs and macrophages, the expression of CD16, NKG2D, perforin and IFN-γ, viability and cytotoxicity of NK cells were significantly downregulated. The secretion of interleukin (IL)-1β, IL-10 and transforming growth factor (TGF)-β in the co-culture system of ESCs and macrophages was increased. Exposure with anti-IL-10 receptor β neutralizing antibody (αhIL-10Rβ) or αTGF-β could partly reverse these effects of ESCs and macrophages on NK cells in vitro. These results suggest that the interaction between macrophages and ESCs downregulates cytotoxicity of NK cells possibly by stimulating the secretion of IL-10 and TGF-β, and may further trigger the immune escape of ectopic fragments and promote the occurrence and the development of EMS.

Open access

Renjie Wang, Wei Pan, Lei Jin, Yuehan Li, Yudi Geng, Chun Gao, Gang Chen, Hui Wang, Ding Ma and Shujie Liao

Artificial intelligence (AI) has experienced rapid growth over the past few years, moving from the experimental to the implementation phase in various fields, including medicine. Advances in learning algorithms and theories, the availability of large datasets and improvements in computing power have contributed to breakthroughs in current AI applications. Machine learning (ML), a subset of AI, allows computers to detect patterns from large complex datasets automatically and uses these patterns to make predictions. AI is proving to be increasingly applicable to healthcare, and multiple machine learning techniques have been used to improve the performance of assisted reproductive technology (ART). Despite various challenges, the integration of AI and reproductive medicine is bound to give an essential direction to medical development in the future. In this review, we discuss the basic aspects of AI and machine learning, and we address the applications, potential limitations and challenges of AI. We also highlight the prospects and future directions in the context of reproductive medicine.

Free access

Jia-Jun Yu, Hui-Ting Sun, Zhong-Fang Zhang, Ru-Xia Shi, Li-Bing Liu, Wen-Qing Shang, Chun-Yan Wei, Kai-Kai Chang, Jun Shao, Ming-Yan Wang and Ming-Qing Li

Endometriosis (EMS) is associated with an abnormal immune response to endometrial cells, which can facilitate the implantation and proliferation of ectopic endometrial tissues. It has been reported that human endometrial stromal cells (ESCs) express interleukin (IL)15. The aim of our study was to elucidate whether or not IL15 regulates the cross talk between ESCs and natural killer (NK) cells in the endometriotic milieu and, if so, how this regulation occurs. The ESC behaviors in vitro were verified by Cell Counting Kit-8 (CCK-8), Annexin/PI, and Matrigel invasion assays, respectively. To imitate the local immune microenvironment, the co-culture system between ESCs and NK cells was constructed. The effect of IL15 on NK cells in the co-culture unit was investigated by flow cytometry (FCM). In this study, we found that ectopic endometrium from patients with EMS highly expressed IL15. Rapamycin, an autophagy inducer, decreased the level of IL15 receptors (i.e. IL15Rα and IL2Rβ). IL15 inhibits apoptosis and promotes the invasiveness, viability, and proliferation of ESCs. Meanwhile, a co-culture with ESCs led to a decrease in CD16 on NK cells. In the co-culture system, IL15 treatment downregulated the levels of Granzyme B and IFN-γ in CD16+NK cells, NKG2D in CD56dimCD16-NK cells, and NKP44 in CD56brightCD16-NK cells. On the one hand, these results indicated that IL15 derived from ESCs directly stimulates the growth and invasion of ESCs. On the other hand, IL15 may help the immune escape of ESCs by suppressing the cytotoxic activity of NK cells in the ectopic milieu, thereby facilitating the progression of EMS.

Restricted access

Xue-Min Qiu, Zhen-Zhen Lai, Si-Yao Ha, Hui-Li Yang, Li-Bing Liu, Yan Wang, Jia-Wei Shi, Lu-Yu Ruan, Jiang-Feng Ye, Jiang-Nan Wu, Qiang Fu, Xiao-Fang Yi, Kai-Kai Chang and Ming-Qing Li

Immune cells and cytokines have important roles in the pathogenesis of endometriosis. However, the production and role of cytokines of T helper type 1 (Th1) and Th2 cells in the progress of endometriosis have remained to be fully elucidated. The present study reported that the interferon (IFN)-γ levels and the percentage of IFN-γ+CD4+ cells were significantly increased in the peritoneal fluid (PF) at the early stage and maintained at a higher level at the advanced stage of endometriosis; furthermore, interleukin (IL)-10 and IL-10+CD4+ cells were elevated in the advanced stage of endometriosis. In addition, IL-2 levels in the PF at the advanced stage of endometriosis were elevated and negatively associated with IFN-γ expression. In a co-culture system of ectopic endometrial stromal cells (ESCs) and macrophages, elevated IL-2 was observed, and treatment with cytokines IL-2 and transforming growth factor-β led to upregulation of the ratio of IL-2+ macrophages. IL-27-overexpressing ESCs and macrophages were able to induce a higher ratio of IL-10+CD4+ T cells. Blocking of IL-2 with anti-IL-2 neutralizing antibody led to upregulation of the ratio of IFN-γ+CD4+ T cells in the co-culture system in vitro. Recombinant human IL-10 and IFN-γ promoted the viability, invasiveness and transcription levels of matrix metalloproteinase (MMP)2, MMP9, and prostaglandin-endoperoxide synthase 2 of ESCs, particularly combined treatment with IL-10 and IFN-γ. These results suggest that IL-2 and IL-27 synergistically promote the growth and invasion of ESCs by modulating the balance of IFN-γ and IL-10 and contribute to the progress of endometriosis.