Search Results

You are looking at 11 - 20 of 20 items for

  • Author: Jennifer L Juengel x
Clear All Modify Search
Free access

Jennifer L Juengel, Michelle C French, Laurel D Quirke, Alexia Kauff, George W Smith and Peter D Johnstone

We hypothesised that cocaine- and amphetamine-regulated transcript (CARTPT) would be differentially expressed in ewes with differing ovulation rates. Expression of mRNA for CARTPT, as well as LHCGR, FSHR, CYP19A1 and CYP17A1 was determined in antral follicles ≥1 mm in diameter collected during the follicular phase in ewes heterozygous for the Booroola and Inverdale genes (I+B+; average ovulation rate 4) and ++ contemporaries (++; average ovulation rate 1.8). In ++ ewes (n = 6), CARTPT was expressed in small follicles (1 to <3 mm diameter), where 18.8 ± 2.5% follicles expressed CARTPT. CART peptide was also detected in follicular fluid of some follicles of ++ ewes. In I+B+ ewes, 5/6 ewes did not have any follicles that expressed CARTPT, and no CART peptide was detected in any follicle examined. Expression pattern of CYP19A1 differed between I+B+ and ++ ewes with an increased percentage of small and medium follicles (3 to <4.5 mm diameter) but decreased percentage of large follicles (≥4.5 mm diameter) expressing CYP19A1 in the I+B+ ewes. Many of the large follicles from the I+B+ ewes appeared non-functional and expression of LHCGR, FSHR, CYP17A1 and CYP19A1 was less than that observed in ++ ewes. Expression of FSHR and CYP17A1 was not different between groups in small and medium follicles, but LHCGR expression was approximately double in I+B+ ewes compared to that in ++ ewes. Thus, ewes with high ovulation rates had a distinct pattern of expression of CARTPT mRNA and protein compared to ewes with normal ovulation rates, providing evidence for CART being important in the regulation of ovulation rate.

Free access

Janet L Crawford, Derek A Heath, Karen L Reader, Laurel D Quirke, Norma L Hudson, Jennifer L Juengel and Kenneth P McNatty

The aim of this study was to test the hypothesis that the high ovulation rate in ewes (BB) homozygous for a mutation in the bone morphogenetic protein receptor type 1B (BMPR1B) gene is linked to lower BMP15 and/or GDF9 mRNA in oocytes compared with those in wild-type (++) ewes. Cumulus cell–oocyte complexes (COC) and granulosa cells (GC) were recovered from ≥1 mm diameter follicles of BB and ++ ewes during a prostaglandin-induced follicular phase. Expression levels of GDF9 and BMP15 were measured by multiplex qPCR from individual COC. The gonadotropin-induced cAMP responses of the GC from each non-atretic follicle were measured following treatment with FSH or human chorionic gonadotropin. In a separate validation experiment, GDF9 and BMP15 expression was present only in oocytes and not in cumulus cells. There was no effect of follicular diameter on oocyte-derived GDF9 or BMP15 mRNA levels. The mean expression levels of BMP15, but not GDF9, were significantly lower in all non-atretic follicles, including the subsets containing either FSH- or LH-responsive GC in BB, compared with ++, ewes. No genotype effects were noted for FSH-induced cAMP production by GC either with respect to dose of, or number of follicles responding to, FSH. However, ovaries from BB ewes contained significantly more follicles responsive to LH, with respect to cAMP production in GC. We propose that these findings are consistent with the hypothesis that the higher ovulation rate in BB sheep is due, at least in part, to lower oocyte-derived BMP15 mRNA levels together with the earlier onset of LH-responsiveness in GC.

Free access

Jia Yi Lin, Janet L Pitman-Crawford, Adrian H Bibby, Norma L Hudson, C Joy McIntosh, Jennifer L Juengel and Kenneth P McNatty

Free access

Jia Yi Lin, Janet L Pitman-Crawford, Adrian H Bibby, Norma L Hudson, C Joy McIntosh, Jennifer L Juengel and Kenneth P McNatty

The aims were to investigate whether oocyte-secreted growth factors from a high (i.e. rat) and low (i.e. sheep) ovulation rate species could stimulate 3H-thymidine incorporation in granulosa cells (GC) from antral follicles from the same or across species. Denuded oocytes (DO) were co-incubated with GC with or without specific antibodies to growth differentiating factor 9 (GDF9) or bone morphogenetic protein 15 (BMP15). Co-incubations of DO-GC from the same or across species significantly increased thymidine incorporation in GC with increasing numbers of DO. GDF9 immuno-neutralisation reduced thymidine incorporation in rat GC co-incubated with either rat or ovine DO and in ovine GC co-incubated with ovine or rat DO. BMP15 immuno-neutralisation only reduced thymidine incorporation when ovine DO were co-incubated with either ovine or rat GC. Western blotting of oocytes co-incubated with GC identified GDF9 and BMP15 proteins for sheep and GDF9 protein for rats in oocyte lysates and incubation media. With respect to rat BMP15, a promature protein was identified in the oocyte lysate but not in media. Expression levels of GDF9 relative to BMP15 mRNA in DO co-incubated with GC were highly correlated (R 2=0.99) within both species. However, the expression ratios were markedly different for the rat and sheep (4.3 vs 1.0 respectively). We conclude that during follicular development, rat oocytes secrete little, if any, BMP15 and that GDF9 without BMP15 can stimulate proliferation of rat and ovine GC. In contrast, ovine oocytes secrete both BMP15 and GDF9, and both were found to stimulate proliferation in ovine and rat GC.

Restricted access

Zaramasina L Clark, Derek A Heath, Anne R O’Connell, Jennifer L Juengel, Kenneth P McNatty and Janet L Pitman

Ewes with single copy mutations in GDF9, BMP15 or BMPR1B have smaller preovulatory follicles containing fewer granulosa cells (GC), while developmental competency of the oocyte appears to be maintained. We hypothesised that similarities and/or differences in follicular maturation events between WT (++) ewes and mutant ewes with single copy mutations in BMP15 and BMPR1B (I+B+) are key to the attainment of oocyte developmental competency and for increasing ovulation rate (OR) without compromising oocyte quality. Developmental competency of oocytes from I+B+ animals was confirmed following embryo transfer to recipient ewes. The microenvironment of both growing and presumptive preovulatory (PPOV) follicles from ++ and I+B+ ewes was investigated. When grouped according to gonadotropin-responsiveness, PPOV follicles from I+B+ ewes had smaller mean diameters with fewer GC than equivalent follicles in ++ ewes (OR = 4.4 ± 0.7 and 1.7 ± 0.2, respectively; P < 0.001). Functional differences between these genotypes included differential gonadotropin-responsiveness of GC, follicular fluid composition and expression levels of cumulus cell-derived VCAN, PGR, EREG and BMPR2 genes. A unique microenvironment was characterised in I+B+ follicles as they underwent maturation. Our evidence suggests that GC were less metabolically active, resulting in increased follicular fluid concentrations of amino acids and metabolic substrates, potentially protecting the oocyte from ROS. Normal expression levels of key genes linked to oocyte quality and embryo survival in I+B+ follicles support the successful lambing percentage of transferred I+B+ oocytes. In conclusion, these I+B+ oocytes develop normally, despite radical changes in follicular size and GC number induced by these combined heterozygous mutations.

Free access

Karen L Reader, Derek A Heath, Stan Lun, C Joy McIntosh, Andrea H Western, Roger P Littlejohn, Kenneth P McNatty and Jennifer L Juengel

Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-secreted factors known to be involved in regulating the proliferation and differentiation of granulosa cells during follicular growth. The aims of this study were to determine the signalling pathways used by recombinant forms of murine and ovine GDF9 and BMP15 in combination (GDF9+BMP15) and the molecular complexes formed by combinations of these factors. Differences in the molecular forms of combinations of murine and ovine GDF9+BMP15 were observed by western blot analysis. Ovine GDF9+BMP15-stimulated 3H-thymidine uptake was completely blocked by SMAD2/3 and nuclear factor-κB pathway inhibitors and partially blocked by a p38-mitogen-activated protein kinase (MAPK) inhibitor. Thymidine uptake by murine GDF9+BMP15 was reduced by the SMAD2/3 and extracellular signal-regulated kinase-MAPK pathway inhibitors and increased after addition of a c-Jun N-terminal kinase inhibitor. Stimulation of 3H-thymidine uptake by GDF9+BMP15 from either species was not affected by the SMAD1/5/8 pathway inhibitor. In conclusion, both murine and ovine GDF9+BMP15-stimulated thymidine incorporation in rat granulosa cells was dependent on the SMAD2/3 signalling pathway but not the SMAD1/5/8 pathway. Divergence in the non-SMAD signalling pathways used by murine and ovine GDF9+BMP15 was also evident and may be due to the differences observed in the molecular complexes formed by these factors. These results are consistent with the hypothesis that the disparate cooperative functions of GDF9 and BMP15 in different species are mediated by divergent non-SMAD signalling pathways.

Free access

Jennifer L Juengel, Karen L Reader, Adrian H Bibby, Stan Lun, Ian Ross, Lisa J Haydon and Kenneth P McNatty

The intraovarian roles of BMP family members such as BMP2, 4, 6 and 7 are not well understood, particularly in species with low ovulation rates such as sheep. Therefore, the objectives of these experiments were to determine the expression patterns of mRNAs encoding BMP2, 4, 6 and 7 during ovarian follicular development in sheep, and to determine the effects of these growth factors on ovine granulosa cell functions in vitro. For comparative purposes, the effects of these BMPs were also determined in rat granulosa cells since these factors have been most widely studied in this poly-ovulatory species. As assessed by in situ hybridization, non-atretic ovine follicles expressed mRNA for BMP6 but not 2, 4 or 7. Furthermore, expression of BMP6 was limited to the oocyte of primordial as well as primary, pre-antral and antral follicles. Reverse transcription-PCR of granulosa cell mRNA detected low levels of all the BMPs in some pools of cells. BMP2, 4, 6 and 7 each inhibited progesterone production from ovine granulosa cells without affecting cellular proliferation/survival. Similarly, these BMPs inhibited progesterone production from rat granulosa cells. However, they also stimulated cellular proliferation/survival of the rat granulosa cells highlighting a species-specific difference for these growth factors. In conclusion, in sheep, BMP2, 4, 6 and 7 inhibit granulosa cell differentiation without affecting proliferation. However, as BMP2, 4 and 7 were not detectable by in situ hybridization in any cells of non-atretic ovarian follicles, it seems unlikely that these proteins would have an important intra-ovarian role in regulating follicular development in sheep. In contrast, localization of BMP6 mRNA in the oocyte suggests that this BMP family member may have a paracrine and/or autocrine role in regulating follicular growth in sheep, as has been shown for two other oocyte derived from members of the transforming growth factor superfamily, BMP15 and growth differentiation factor 9.

Free access

Kanako Hayashi, Anne R O'Connell, Jennifer L Juengel, Ken P McNatty, George H Davis, Fuller W Bazer and Thomas E Spencer

Postnatal development of the uterus involves, particularly, development of uterine glands. Studies with ovariectomized ewe lambs demonstrated a role for ovaries in uterine growth and endometrial gland development between postnatal days (PNDs) 14 and 56. The uterotrophic ovarian factor(s) is presumably derived from the large numbers of growing follicles in the neonatal ovary present after PND 14. The Inverdale gene mutation (FecXI) results in an increased ovulation rate in heterozygous ewes; however, homozygous ewes (II) are infertile and have ‘streak’ ovaries that lack normal developing of preantral and antral follicles. Uteri were obtained on PND 56 to determine whether postnatal uterine development differs between wild-type (++) and II Inverdale ewes. When compared with wild-type ewes, uterine weight of II ewes was 52% lower, and uterine horn length tended to be shorter, resulting in a 68% reduction in uterine weight:length ratio in II ewes. Histomorphometrical analyses determined that endometria and myometria of II ewes were thinner and intercaruncular endometrium contained 38% fewer endometrial glands. Concentrations of estradiol in the neonatal ewes were low and not different between ++ and II ewes, but II ewes had lower concentrations of testosterone and inhibin-α between PNDs 14 and 56. Receptors for androgen and activin were detected in the neonatal uteri of both ++ and II ewes. These results support the concept that developing preantral and/or antral follicles of the ovary secrete uterotrophic factors, perhaps testosterone or inhibin-α, that acts in an endocrine manner to stimulate uterine growth and endometrial gland development in the neonatal ewes.

Free access

Kenneth P McNatty, Jennifer L Juengel, Karen L Reader, Stan Lun, Samu Myllymaa, Steve B Lawrence, Andrea Western, Mohamed F Meerasahib, David G Mottershead, Nigel P Groome, Olli Ritvos and Mika P E Laitinen

The oocyte-secreted polypeptide growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15, also known as GDF9B) have both been shown to be essential for ovarian follicular growth and function. The effects of murine (m) and ovine (o) GDF9 as well as oBMP15, alone or together, on 3H-thymidine uptake and progesterone and inhibin production by granulosa cells from rats were determined. Murine GDF9 stimulated thymidine incorporation by granulosa cells whereas oGDF9 and oBMP15 alone had no effect. However, oBMP15 given together with mGDF9 or oGDF9 was very potent in stimulating 3H-thymidine incorporation by granulosa cells with a greater than 3-fold stimulation compared with any growth factor alone. The synergistic effect of oBMP15 and oGDF9 was almost completely blocked by antibodies generated against these growth factors when administered either alone or in combination. While neither GDF9 (murine or ovine) nor oBMP15 were able to modulate FSH-stimulated progesterone production on their own, FSH-stimulated progesterone production by granulosa cells was potently inhibited when BMP15 and GDF9 were administered together. Immunoreactive α-inhibin levels increased more than 15-fold from granulosa cells when BMP15 and GDF9 were given together whereas consistent stimulatory effects of either growth factor alone were not observed. The effects of GDF9 and BMP15, when added together, were different than those observed for the growth factors alone. Therefore, we hypothesize that within the ovary, these oocyte-secreted growth factors co-operate to regulate proliferation and gonadotropin-induced differentiation of granulosa cells in mammals.

Free access

Kenneth P McNatty, Jennifer L Juengel, Karen L Reader, Stan Lun, Samu Myllymaa, Steve B Lawrence, Andrea Western, Mohamed F Meerasahib, David G Mottershead, Nigel P Groome, Olli Ritvos and Mika P E Laitinen

The oocyte-secreted polypeptide growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15, also known as GDF9B) have both been shown to be essential for ovarian follicular development and ovulation rate. In addition, it is known from both in vivo and in vitro studies that these factors co-operate in some manner. To date, most studies examining the in vitro effects of these growth factors have used the rodent model. However, the evidence suggests that these growth factors have somewhat different roles between rodents and ruminants. Therefore, the objectives of these studies were to examine the effects of GDF9 and BMP15, alone and together, on the functions of ovine and bovine granulosa cells under in vitro conditions. Ovine (o)BMP15 given together with murine (m)GDF9 or oGDF9 was more potent in stimulating 3H-thymidine incorporation by ovine granulosa cells compared with each growth factor alone. For bovine granulosa cells, there appeared to be little or no co-operativity between oBMP15 and oGDF9 as oBMP15 alone was as potent as any combination of the two growth factors in stimulating 3H-thymidine uptake. The species of origin of GDF9 affected the progesterone response in ovine granulosa cells with mGDF9 stimulating and oGDF9 inhibiting progesterone production. Ovine BMP15 alone had no effect on progesterone production by ovine granulosa cells and these growth factors did not appear to co-operate. FSH-stimulated progesterone production by bovine granulosa cells was most potently inhibited when oBMP15 and murine or ovine GDF9 were administered together. As was observed for progesterone, the species of origin of GDF9 affected inhibin production by ovine granulosa cells where mGDF9 inhibited while oGDF9 stimulated production. Murine GDF9 also inhibited inhibin production from bovine granulosa cells. For both ovine and bovine granulosa cells, BMP15 alone had no effect on inhibin production and there did not appear to be any co-operation between GDF9 and BMP15. These results indicate that the effects of BMP15 and GDF9 varied with respect to the species of origin of the growth factor. Moreover, the effects of GDF9 and BMP15 together were often co-operative and not always the same as those observed for these growth factors alone.