Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Masamichi Kurohmaru x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Kasane Kishi, Aya Uchida, Hinako M Takase, Hitomi Suzuki, Masamichi Kurohmaru, Naoki Tsunekawa, Masami Kanai-Azuma, Stephen A Wood, and Yoshiakira Kanai

USP9X (ubiquitin-specific peptidase 9, X chromosome) is the mammalian orthologue of Drosophila deubiquitinase fat facets that was previously shown to regulate the maintenance of the germ cell lineage partially through stabilizing Vasa, one of the widely conserved factors crucial for gametogenesis. Here, we demonstrate that USP9X is expressed in the gonocytes and spermatogonia in mouse testes from newborn to adult stages. By using Vasa-Cre mice, germ cell-specific conditional deletion of Usp9x from the embryonic stage showed no abnormality in the developing testes by 1 week and no appreciable defects in the undifferentiated and differentiating spermatogonia at postnatal and adult stages. Interestingly, after 2 weeks, Usp9x-null spermatogenic cells underwent apoptotic cell death at the early spermatocyte stage, and then, caused subsequent aberrant spermiogenesis, which resulted in a complete infertility of Usp9x conditional knockout male mice. These data provide the first evidence of the crucial role of the spermatogonial USP9X during transition from the mitotic to meiotic phases and/or maintenance of early meiotic phase in Usp9x conditional knockout testes.

Free access

Mohammad Shah Alam, Seiichiroh Ohsako, Takashi Matsuwaki, Xiao Bo Zhu, Naoki Tsunekawa, Yoshiakira Kanai, Hideko Sone, Chiharu Tohyama, and Masamichi Kurohmaru

Although di(n-butyl) phthalate (DBP), a suspected endocrine disruptor, induces testicular atrophy in prepubertal male rats, whether it exerts estrogenic activity in vivo remains a matter of debate. In the present study, we explored the estrogenic potency of DBP using 3-week-old male rats, and then examined the relationship between estrogen-induced spermatogenic cell apoptosis and testicular steroidogenesis. Daily exposure to DBP for 7 days caused testicular atrophy due to loss of spermatogenic cells, whereas testicular steroidogenesis was almost the same with the control values. A single exposure of DBP decreased testicular steroidogenesis in addition to decreasing the level of serum LH at 3 h after DBP treatment, with an extremely high incidence of apoptotic spermatogenic cells at 6 h after administration. To elucidate the estrogenic activity of DBP, we carried out an inhibition study using pure antiestrogen ICI 182,780 (ICI) in a model of spermatogenic cell apoptosis induced by DBP or estradial-3-benzoate (EB). Although both the DBP- and EB-treated groups showed a significant increase in spermatogenic cell apoptosis, ICI pretreatment significantly decreased the number of apoptotic spermatogenic cells in these two groups. In contrast, testicular steroidogenesis and serum FSH were significantly reduced in all the treated groups, even in the DBP+ICI and EB+ICI groups. Taken together, these findings led us to conclude that estrogenic compounds such as DBP and EB induce spermatogenic cell apoptosis in prepubertal rats, probably by activating estrogen receptors in testis, and that reduction in testicular steroidogenic function induced by estrogenic compounds is not associated with spermatogenic cell apoptosis.

Free access

Takeshi Sato, Yoshiakira Kanai, Takashi Noma, Masami Kanai-Azuma, Shinichiro Taya, Toshiyasu Matsui, Maki Ishii, Hayato Kawakami, Masamichi Kurohmaru, Kozo Kaibuchi, Stephen A Wood, and Yoshihiro Hayashi

Usp9x, an X-linked deubiquitylating enzyme, is stage dependently expressed in the supporting cells (i.e. Sertoli cells and granulosa cells) and germ cells during mouse gametogenesis. Af-6, a cell junction protein, has been identified as a substrate of Usp9x, suggesting a possible association between Usp9x and Af-6 in spermatogenesis and oogenesis. In this study, we examined the expression pattern of Af-6 and Usp9x and their intracellular localization in testes and ovaries of mice treated with or without pregnant mare serum gonadotropin (PMSG), an FSH-like hormone. In both testes and ovaries, Af-6 expression was predominantly observed in supporting cells, as well as in steroidogenic cells, but not in any germ cells. In Sertoli cells, Af-6 was continuously expressed throughout postnatal and adult stages, where both Af-6 and Usp9x were enriched at the sites of Sertoli–Sertoli and Sertoli–spermatid junctions especially at stages XI–VI. In the granulosa cells, Af-6, as well as Usp9x, was highly expressed in primordial and primary follicles, but its expression rapidly decreased after the late-secondary follicle stage. Interestingly, in PMSG-treated mice, the expression levels of Af-6 and Usp9x were synchronously enhanced, slightly in Sertoli cells and strongly in granulosa cells of the late-secondary and Graafian follicles. Such closely correlated expression patterns between Af-6 and Usp9x clearly suggest that Af-6 may be deubiquitylated by Usp9x in both Sertoli and granulosa cells. It further suggests that the post-translational regulation of Af-6 by Usp9x may be one potential pathway to control the cell adhesion dynamics in mammalian gametogenesis.

Free access

Mai Shinomura, Kasane Kishi, Ayako Tomita, Miyuri Kawasumi, Hiromi Kanezashi, Yoshiko Kuroda, Naoki Tsunekawa, Aisa Ozawa, Yoshimi Aiyama, Asuka Yoneda, Hitomi Suzuki, Michiko Saito, Jean-Yves Picard, Kenji Kohno, Masamichi Kurohmaru, Masami Kanai-Azuma, and Yoshiakira Kanai

Cell ablation technology is useful for studying specific cell lineages in a developing organ in vivo. Herein, we established a novel anti-Müllerian hormone (AMH)-toxin receptor-mediated cell knockout (Treck) mouse line, in which the diphtheria toxin (DT) receptor was specifically activated in Sertoli and granulosa cells in postnatal testes and ovaries respectively. In the postnatal testes of Amh-Treck transgenic (Tg) male mice, DT injection induced a specific loss of the Sertoli cells in a dose-dependent manner, as well as the specific degeneration of granulosa cells in the primary and secondary follicles caused by DT injection in Tg females. In the testes with depletion of Sertoli cell, germ cells appeared to survive for only several days after DT treatment and rapidly underwent cell degeneration, which led to the accumulation of a large amount of cell debris within the seminiferous tubules by day 10 after DT treatment. Transplantation of exogenous healthy Sertoli cells following DT treatment rescued the germ cell loss in the transplantation sites of the seminiferous epithelia, leading to a partial recovery of the spermatogenesis. These results provide not only in vivo evidence of the crucial role of Sertoli cells in the maintenance of germ cells, but also show that the Amh-Treck Tg line is a useful in vivo model of the function of the supporting cell lineage in developing mammalian gonads.