Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Meredith E Camp x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Ashley F George, Kathleen M Rahman, Dori J Miller, Anne A Wiley, Meredith E Camp, Frank F Bartol, and Carol A Bagnell

Nursing ensures lactocrine delivery of maternally derived, milk-borne bioactive factors to offspring, which affects postnatal development of female reproductive tract tissues. Disruption of lactocrine communication for two days from birth (postnatal day (PND) 0) by feeding milk replacer in lieu of nursing or consumption of colostrum alters porcine uterine gene expression globally by PND 2 and inhibits uterine gland genesis by PND 14. Here, objectives were to determine effects of: (1) nursing or milk replacer feeding from birth; (2) a single dose of colostrum or milk replacer and method of feeding and (3) a single feeding of colostrum or milk replacer, with or without oral supplementation of IGF1, administered at birth on aspects of porcine uterine development at 12-h postnatally. Results indicate nursing for 12 h from birth supports rapid establishment of a uterine developmental program, illustrated by patterns of endometrial cell proliferation, expression of genes associated with uterine wall development and entry into mitosis and establishment of a uterine MMP9/TIMP1 system. A single feeding of colostrum at birth increased endometrial cell proliferation at 12 h, regardless of method of feeding. Oral supplementation of IGF1 was sufficient to support endometrial cell proliferation at 12 h in replacer-fed gilts, and supplementation of colostrum with IGF1 further increased endometrial cell proliferation. Results indicate that lactocrine regulation of postnatal uterine development is initiated with the first ingestion of colostrum. Further, results suggest IGF1 may be lactocrine-active and support a 12-h bioassay, which can be used to identify uterotrophic lactocrine activity.

Free access

Meredith E Camp, Anne A Wiley, Monica B Boulos, Kathleen M Rahman, Frank F Bartol, and Carol A Bagnell

Nursing supports neonatal porcine uterine and testicular development, however, lactocrine effects on cervical development are undefined. Studies were conducted to determine the effects of i) age and the imposition of the lactocrine-null state from birth (postnatal day 0 (PND0)) by milk replacer feeding on cervical histology; ii) imposition of the lactocrine-null state for 2 days from birth on cervical cell proliferation, as reflected by proliferating cell nuclear antigen immunostaining; and iii) a single feeding of colostrum or milk replacer, administered at birth, with or without oral IGF1, on cervical cell proliferation and phosphorylated AKT (pAKT) and B-cell lymphoma 2 (BCL2) protein levels at 12 h postnatal. Cervical crypt depth and height of luminal epithelium (LE) increased with age by PND14, when both responses were reduced in replacer-fed gilts. Cell proliferation was reduced in LE at PND2, and in crypt epithelium and stroma by PND14 in replacer-fed gilts. Returning replacer-fed gilts to nursing on PND2 did not rescue the cervical phenotype by PND14. A single feeding of colostrum, but not milk replacer, was sufficient to support cervical cell proliferation at 12 h postnatal. IGF1 supplementation induced cell proliferation in replacer-fed gilts, and increased cervical pAKT and BCL2 levels in colostrum-fed gilts and replacer-fed gilts at 12 h postnatal. Results indicate that age and nursing support porcine cervical development, support is initiated at first ingestion of colostrum, IGF1 may be lactocrine-active, and identification of lactocrine-active factors can be accomplished by 12 h postnatal using this bioassay system.