Parthenogenesis or ‘virgin birth’ is embryonic development in unfertilized eggs. It is a routine means of reproduction in many invertebrates. However, even though parthenogenesis occurs naturally in even more advanced vertebrates, like birds, it is mostly abortive in nature. In fact, multiple limiting factors, such as delayed and unorganized development as well as unfavorable conditions developing within the unfertilized egg upon incubation, are associated with termination of progressive development of parthenogenetic embryos. In birds, diploid parthenogenesis is automictic and facultative producing only males. However, the mechanisms controlling parthenogenesis in birds are not clearly elucidated. Additionally, it appears from even very recent research that these mechanisms may hinder the normal fertilization process and subsequent embryonic development. For instance, virgin quail and turkey hens exhibiting parthenogenesis have reduced reproductive performance following mating. Also, genetic selection and environmental factors, such as live virus vaccinations, are known to trigger the process of parthenogenesis in birds. Therefore, parthenogenesis has a plausible negative impact on the poultry industry. Hence, a better understanding of parthenogenesis and the mechanisms that control it could benefit commercial poultry production. In this context, the aim of this review is to provide a complete overview of the process of parthenogenesis in birds.
Search Results
You are looking at 1 - 4 of 4 items for
- Author: R Ramachandran x
- Refine by Access: All content x
Olga M Ocón-Grove, Susan M Krzysik-Walker, Sreenivasa R Maddineni, Gilbert L Hendricks III, and Ramesh Ramachandran
Nicotinamide phosphoribosyltransferase (NAMPT) is a cytokine hormone and rate-limiting enzyme involved in production of NAD and therefore affects a variety of cellular functions requiring NAD. Spermatogenesis and testicular steroidogenesis are likely to depend on NAD-dependent reactions and may therefore be affected by changes in testicular NAMPT expression. The objectives of the present study are to investigate testicular NAMPT expression as well as plasma NAMPT levels in prepubertal and adult chickens. By RT-PCR, NAMPT cDNA expression was detected in prepubertal and adult chicken testes. Using immunohistochemistry, NAMPT was predominantly localized in the nucleus of myoid cells, Sertoli cells, and Leydig cells in the prepubertal chicken testis. In adult chickens, however, NAMPT-immunostaining was observed in the cytoplasm of Leydig cells, Sertoli cells, primary spermatocytes, secondary spermatocytes, round spermatids, and elongated spermatids, but not in the spermatogonial cells. Using real-time quantitative PCR, adult chicken testis was found to contain fourfold greater NAMPT mRNA quantity compared with prepubertal chickens. Testicular NAMPT protein quantities determined by western blotting were not significantly different between adult and prepubertal chicken testes. Using immunoblotting, NAMPT was detected in the seminal plasma and sperm protein extracts obtained from chicken semen. Plasma NAMPT levels, determined by enzyme immunoassay, were at least 28-fold higher in the adult chickens compared with prepubertal male chickens. Taken together, sexual maturation is associated with several changes in testicular NAMPT expression indicating that NAMPT is likely to play a significant role in testicular functions such as spermatogenesis and steroidogenesis.
Sreenivasa R Maddineni, Olga M Ocón-Grove, Susan M Krzysik-Walker, Gilbert L Hendricks III, and Ramesh Ramachandran
Gonadotropin-inhibitory hormone (GnIH), an RFamide peptide, has been found to inhibit pituitary LH secretion in avian and mammalian species. The gene encoding a putative receptor for GnIH (GnIHR) was recently identified in the chicken and Japanese quail brain and pituitary gland. GnIHR appears to be a seven-transmembrane protein belonging to a family of G-protein-coupled receptors. In the present study, we have characterized the expression of GnIHR mRNA in the chicken ovary and demonstrate that GnIHR may exert an inhibitory effect on ovarian follicular development. By RT-PCR, we detected GnIHR mRNA in the chicken testis and in the ovary, specifically both thecal and granulosa cell layers. Real-time quantitative PCR analysis revealed greater GnIHR mRNA quantity in theca cells of prehierarchial follicles compared with that of preovulatory follicles. GnIHR mRNA quantity was significantly decreased in sexually mature chicken ovaries versus ovaries of sexually immature chickens. Estradiol (E2) and/or progesterone (P4) treatment of sexually immature chickens significantly decreased ovarian GnIHR mRNA abundance. Treatment of prehierarchial follicular granulosa cells in vitro with chicken GnIH peptide significantly decreased basal but not FSH-stimulated cellular viability. Collectively, our results indicate that the ovarian GnIHR is likely to be involved in ovarian follicular development. A decrease in ovarian GnIHR mRNA abundance due to sexual maturation or by E2 and/or P4 treatment would implicate an inhibitory role for GnIHR in ovarian follicular development. Furthermore, GnIH may affect follicular maturation by decreasing the viability of prehierarchial follicular granulosa cells through binding to GnIHR.
Olga M Ocón-Grove, Susan M Krzysik-Walker, Sreenivasa R Maddineni, Gilbert L Hendricks III, and Ramesh Ramachandran
Adiponectin is an adipokine hormone that influences glucose utilization, insulin sensitivity, and energy homeostasis by signaling through two distinct receptors, ADIPOR1 and ADIPOR2. While adipose tissue is the primary site of adiponectin expression in the chicken, we previously reported that adiponectin and its receptors are expressed in several other tissues. The objectives of the present study are to characterize adiponectin, ADIPOR1, and ADIPOR2 expressions in the chicken testis and to determine whether sexual maturation affects the abundance of testicular adiponectin, ADIPOR1, and ADIPOR2 mRNAs. By RT-PCR and nucleotide sequencing, testicular adiponectin, ADIPOR1, and ADIPOR2 mRNAs were found to be identical to that expressed in the abdominal fat pad. Using anti-chicken adiponectin, ADIPOR1, or ADIPOR2 antibodies and immunohistochemistry, adiponectin-immunoreactive (ir) and ADIPOR1-ir cells were found exclusively in the peritubular cells as well as in Leydig cells. However, ADIPOR2-ir cells were found in the adluminal and luminal compartments of the seminiferous tubules as well as in interstitial cells. In particular, Sertoli cell syncytia, round spermatids, elongating spermatids, spermatozoa, and Leydig cells showed strong ADIPOR2 immunoreactivity. Using quantitative real-time PCR analyses, testicular ADIPOR1 and ADIPOR2 mRNA abundance were found to be 8.3- and 9-fold higher (P<0.01) in adult chickens compared with prepubertal chickens respectively, suggesting that sexual maturation is likely to be associated with an up-regulation of testicular ADIPOR1 and ADIPOR2 gene expressions. Collectively, our results indicate that adiponectin and its receptors are expressed in the chicken testis, where they are likely to influence steroidogenesis, spermatogenesis, Sertoli cell function as well as spermatozoa motility.