Search Results

You are looking at 1 - 3 of 3 items for

  • Author: A P López-Cardona x
  • Refine by Access: All content x
Clear All Modify Search
Free access

S Pérez-Cerezales, A P López-Cardona, and A Gutiérrez-Adán

The spermatozoa delivered to the female genital tract need to swim towards the oocyte through viscous secretions. Once close to the oocyte, the spermatozoa are guided by a gradient of progesterone (P4) and other unknown chemoattractants via a process known as chemotaxis. Using polyvinylpyrrolidone to establish the conditions of viscosity, we examined the response of mouse spermatozoa to P4. Herein, we show that in low-viscous media, P4 induces hyperactive-like motility whereby sperm show erratic trajectories and non-progressive movement. However, an opposite response is produced in viscous medium in that trajectories are linear and motility is more progressive and less erratic. Our observations provide a behavioural explanation for the chemotaxis of spermatozoa swimming under viscous conditions in a spatial gradient of the chemoattractant P4. They also highlight the importance of using viscous solutions to mimic in vivo conditions when analysing sperm behaviour in response to any stimulus.

Reproduction (2016) 151 501–507

Free access

A P López-Cardona, M J Sánchez-Calabuig, P Beltran-Breña, N Agirregoitia, D Rizos, E Agirregoitia, and A Gutierrez-Adán

Endocannabinoids are known to mediate practically all reproductive events in mammals; however, little is known about their role in oocyte maturation. Through RT-PCR and immunocytochemistry, this study confirms the presence of CB1 and CB2 cannabinoid receptors in bovine oocytes and shows how exposure to the exogenous cannabinoids HU-210 and THC during their in vitro maturation (IVM) activates the phosphorylation of AKT and ERK1/2 proteins associated with the resumption of meiosis. Although supplementation with HU-210 or THC during IVM did not increase blastocyst yields, the expression of interferon tau (IFNτ) and gap junction alpha-1 protein (GJA1) was enhanced at the blastocyst stage. Our data suggest that cannabinoid agonists may be useful IVM supplements as their presence during oocyte maturation upregulates the expression in blastocysts of key genes for embryo quality.

Free access

C de Frutos, A P López-Cardona, N Fonseca Balvís, R Laguna-Barraza, D Rizos, A Gutierrez-Adán, and P Bermejo-Álvarez

Offspring telomere length (TL) has been correlated with paternal TL, but the mechanism for this parent of origin-specific inheritance remains unclear. The objective of this study has been to determine the role of spermatozoa TL in embryonic telomere lengthening by using two mouse models showing dimorphism in their spermatozoa TL: Mus musculus vs Mus spretus and old vs young Mus musculus. Mus spretu s spermatozoa displayed a shorter TL than Mus musculus. Hybrid offspring exhibited lower TL compared with Mus musculus starting at the two-cell stage, before the onset of telomerase expression. To analyze the role of spermatozoa telomeres in early telomere lengthening, we compared the TL in oocytes, zygotes, two-cell embryos and blastocysts produced by parthenogenesis or by fertilization with Mus musculus or Mus spretus spermatozoa. TL was significantly higher in spermatozoa compared with oocytes, and it increased significantly from the oocyte to the zygote stage in those embryos fertilized with Mus musculus spermatozoa, but not in those fertilized with Mus spretus spermatozoa or produced by parthenogenesis. A further increase was noted from the zygote to the two-cell stage in fertilized Mus musculus embryos, whereas hybrid embryos maintained the oocyte TL. Spermatozoa TL shortened with age in Mus musculus and the offspring from young males showed a significantly higher TL compared with that fathered by old males. These significant differences were already noticeable at the two-cell stage. These results suggest that spermatozoa telomeres act as a guide for telomerase-independent telomere lengthening resulting in differences in TL that persist after birth.

Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/151/1/1/suppl/DC1.