Search Results
You are looking at 1 - 1 of 1 items for
- Author: Alejandro Majali-Martinez x
- Refine by access: All content x
Search for other papers by Veronika Tandl in
Google Scholar
PubMed
Search for other papers by Denise Hoch in
Google Scholar
PubMed
Search for other papers by Julia Bandres-Meriz in
Google Scholar
PubMed
Search for other papers by Sanela Nikodijevic in
Google Scholar
PubMed
Search for other papers by Gernot Desoye in
Google Scholar
PubMed
Search for other papers by Alejandro Majali-Martinez in
Google Scholar
PubMed
Endoplasmic reticulum (ER)-stress activates the unfolded protein response (UPR), which plays a (patho)physiological role in the placenta. Oxygen and hyperinsulinemia are major regulators of placental development. Thus, we hypothesized that oxygen, insulin and their interplay modulate ER-stress in early pregnancy. Using the human first-trimester trophoblast cell line ACH-3P, we quantified mRNA and protein of several members of UPR by RT-qPCR and Western blotting, respectively. ER-stress induction using tunicamycin and brefeldin A resulted in increased CHOP (4.6-fold change; P ≤ 0.001), XBP1 expression (1.7- and 1.3-fold change, respectively; P ≤ 0.001 and P < 0.05) and XBP1 splicing (7.9- and 12.8-fold change, respectively; P ≤ 0.001). We subsequently analyzed the effect of oxygen (6.5%, 2.5%), insulin (0.1–10 nM) and their interaction using ANCOVA adjusted for cell passage as co-variate. Although GRP78 protein remained unaffected, low oxygen (2.5% O2) increased IRE1α phosphorylation (+52%; P < 0.05) and XBP1 splicing (1.8-fold change; P ≤ 0.001) after 24 h, while eIF2α protein and CHOP expression were downregulated (−28%; P < 0.05 and −24%; P ≤ 0.001; respectively). eIF2α phosphorylation was also reduced after 48 h by low oxygen (−61%; P < 0.05) but increased in the presence of insulin (+46%; P ≤ 0.01). These changes were not PERK-mediated, since PERK phosphorylation and total protein were not altered. Overall, our results suggest that IRE1α and eIF2α UPR-pathways are differentially regulated by oxygen and insulin in early pregnancy.