Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Alois Boos x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Aykut Gram, Alexandra Trachsel, Alois Boos, and Mariusz P Kowalewski

The endocrine mechanisms that lead to initiation of parturition in dogs are still not fully understood. The prepartum luteolysis is associated with increased prostaglandin (PG) F2α secretion; however, there is no pregnancy- or parturition-related increase in estrogens. Moreover, unlike in other mammalian species, in the dog, increased peripartum levels of cortisol measured sporadically in maternal peripheral blood are not mandatory for normal parturition. Nevertheless, auto/paracrine effects of cortisol at the placental feto-maternal level cannot be excluded. Therefore, the aim of this study was to investigate the expression and localization of glucocorticoid receptor (GR/NR3C1) in canine utero/placental (Ut/Pl) units and uterine interplacental sites at selected time points during pregnancy (pre-implantation, post-implantation and mid-gestation), and at normal and antigestagen-induced parturition. The Ut/Pl expression of GR/NR3C1 did not change significantly from pre-implantation until mid-gestation; however, it was strongly induced during the prepartum luteolysis. Within the interplacental samples, expression of GR/NR3C1-mRNA was greater post-implantation than pre-implantation and did not change afterward, i.e. toward mid-gestation. Compartmentalization studies within the Ut/Pl units, involving placenta, endometrium and myometrium separately, performed at the prepartum luteolysis revealed the highest GR/NR3C1-mRNA levels in placenta compared with endometrium and myometrium. Interestingly, in antigestagen-treated mid-pregnancy dogs, Ut/Pl and interplacental GR/NR3C1-mRNA expression remained unaffected. At the cellular level, placental GR/NR3C1 was clearly detectable in placenta fetalis, i.e. in trophoblast cells. In conclusion, increased expression of GR/NR3C1 during normal parturition, but not following antigestagen-treatment, suggest that it is not required for initiating the signaling cascade of PG synthesis leading to the induction of parturition in the dog.

Free access

Aykut Gram, Sophie Latter, Alois Boos, Bernd Hoffmann, and Mariusz P Kowalewski

Luteal development is regulated by many locally produced mediators, e.g., prostaglandins and angiogenic factors. However, the role and function of vasoactive factors in the canine corpus luteum (CL) remain largely unknown. Consequently, expression of the endothelin (ET) receptors-A and -B (ETA and ETB, revealing vasoconstriction and vasodilator properties respectively), the ET-converting enzyme (ECE1) and ET1, -2 and -3 were investigated in CL from non-pregnant dogs (days 5, 15, 25, 35, 45 and 65 post-ovulation), and at selected stages of pregnancy (pre-implantation, post-implantation, mid-gestation), and during normal and antigestagen-induced prepartum luteolysis/abortion. The interrelationship between PGE2 and the ET system was investigated in PGE2-treated canine primary lutein cells from early CL. ET1 did not change significantly over time; ET2, ECE1 and ETB were elevated in early CL and were downregulated towards the mid/late-luteal phase. The prepartum increase of ET2 was significant. ET3 increased gradually, and was highest in late CL and/or at prepartum luteolysis. ETA remained constant until the late CL phase and increased only during prepartum luteolysis. ET1 was localized to the luteal cells, and ET2, ET3 and ETA to vascular endothelium. ECE1 and ETB were detected at both locations. Except for upregulated ET1 and lack of effect on ET2, antigestagen applied to mid-pregnant dogs evoked similar changes to those observed during normal luteolysis. PGE2 upregulated ETB in treated cells; ETA and ET1 remained unaffected, and ET2 decreased. A modulatory role of the ETs in canine CL, possibly in association with other factors (e.g., PGE2 and progesterone receptor), is strongly indicated.

Free access

Mariusz P Kowalewski, Barbara Fox, Aykut Gram, Alois Boos, and Iris Reichler

The luteal phase in dogs is governed by many poorly understood regulatory mechanisms. Functioning of the corpus luteum (CL) is unaffected by hysterectomy. Recently, the role of prostaglandins in regulating canine CL function was addressed suggesting a luteotrophic effect of prostaglandin E2 (PGE2) during the early luteal phase. However, compelling functional evidence was lacking. The potential of PGE2 to stimulate steroidogenesis was tested in canine primary luteal cells isolated from developing CL of non-pregnant dogs. In addition, the luteal expression of prostaglandin transporter (PGT) and steroidogenic acute regulatory protein (STAR) was demonstrated and characterized in CL from non-pregnant bitches during the course of dioestrus as well as from pregnant animals during the pre-implantation, post-implantation and mid-gestation periods of pregnancy and during luteolysis; the luteal expression of PGE2 receptors (EP2 and EP4) has been investigated at the protein level throughout pregnancy. Our findings show that PGE2 is an activator of STAR expression in canine luteal cells from early luteal phase, significantly up-regulating STAR promoter activity and protein expression resulting in increased steroidogenesis. The 3βHSD (HSD3B2) and P450scc (CYP11A1) expression remained unaffected by PGE2 treatment. The expression of PGT was confirmed in CL during both pregnancy and dioestrus and generally localized to the luteal cells. After initial up-regulation during the earlier stages of the CL phase, its expression declined towards the luteal regression. Together with the demonstration of EP2 and EP4 throughout pregnancy, and the decline in EP2 at prepartum, our findings further support our hypothesis that intra-luteal PGE2 may play an important role in regulating progesterone secretion in the canine CL.

Free access

Felix R Graubner, Alois Boos, Selim Aslan, Ibrahim Kücükaslan, and Mariusz P Kowalewski

For many years, modifications of the uterine extracellular matrix (ECM) during gestation have not been considered as critical for successful canine (Canis lupus familiaris) pregnancy. However, previous reports indicated an effect of free-floating blastocysts on the composition of the uterine ECM. Here, the expression of selected genes involved in structural functions, cell-to-cell communication and inhibition of matrix metalloproteinases were targeted utilizing qPCR and immunohistochemistry. We found that canine free-floating embryos affect gene expression of FN1, ECM1 and TIMP4. This seems to be associated with modulation of trophoblast invasion, and proliferative and adhesive functions of the uterus. Although not modulated at the beginning of pregnancy, the decrease of structural ECM components (i.e. COL1, -3, -4 and LAMA 2) from pre-implantation toward post-implantation at placentation sites appears to be associated with softening of the tissue in preparation for trophoblast invasion. The further decrease of these components at placentation sites at the time of prepartum luteolysis seems to be associated with preparation for the release of fetal membranes. Reflecting a high degree of communication, intercellular cell adhesion molecules are induced following placentation (Cx26) or increase gradually toward prepartum luteolysis (Cx43). The spatio-temporal expression of TIMPs suggests their active involvement in modulating fetal invasiveness, and together with ECM1, they appear to protect deeper endometrial structures from trophoblast invasion. With this, the dog appears to be an interesting model for investigating placental functions in other species, e.g. in humans in which Placenta accreta appears to share several similarities with canine subinvolution of placental sites (SIPS). In summary, the canine uterine ECM is only moderately modified in early pregnancy, but undergoes vigorous reorganization processes in the uterus and placenta following implantation.

Free access

Marta Nowak, Aykut Gram, Alois Boos, Selim Aslan, Serhan S Ay, Firdevs Önyay, and Mariusz P Kowalewski

Relaxin (RLN) is a key hormone of pregnancy in mammals best known for its involvement in connective tissue remodeling. In the domestic dog, placental RLN is the only known endocrine marker of pregnancy. However, knowledge is sparse regarding the spatio-temporal expression of RLN and its receptors (RXFP1 and RXFP2) in the canine uterus and placenta. Here, their expression was investigated in the pre-implantation uterus and utero-placental compartments (UtPl) at selected time points during gestation: post-implantation, mid-gestation, and at normal and antigestagen-induced luteolysis/abortion. Immunohistochemistry with newly generated, canine-specific antisera, in situ hybridization and semi-quantitative PCR were applied. In compartmentalization studies, placental and endometrial RLN increased continuously toward prepartum. The placental RXFP1 was time-related and highest during post-implantation and decreased together with RXFP2 at prepartum luteolysis. The endometrial levels of both receptors did not vary greatly, but myometrial RXFP2 decreased from mid-gestation to prepartum luteolysis. Antigestagen treatment resulted in suppression of RLN in UtPl and decreased RXFP1 and RXFP2 in the uterus. The placental RLN was localized mainly in the cytotrophoblast. Additionally, RXFP1 stained strongly in placental endothelial cells while RXFP2 was found mainly in maternal decidual cells. Uterine staining for all targets was found in epithelial cellular constituents and in myometrium. Finally, besides its endocrine functions, RLN seems to be involved in auto-/paracrine regulation of utero-placental functions in dogs in a time-dependent manner. New insights into feto-maternal communication was provided, in particular regarding the localization of RXFP2 in the maternal decidual cells, implying functional roles of RLN during the decidualization process.

Free access

Aykut Gram, Miguel Tavares Pereira, Alois Boos, Anna T Grazul-Bilska, and Mariusz P Kowalewski


Rapid establishment of a vascular network is essential for normal functionality of the corpus luteum (CL). The early luteal phase is associated with increased expression of the VEGF system in canine CL. Acting in synchrony with angiopoietins (ANGPTs), VEGF system plays major roles in stabilization of blood vessels. However, the expression of the ANGPT system has not yet been investigated in the dog. Therefore, here, we investigated the luteal expression of ANGPT1, -2, and of their receptors TIE1 and -2, in pregnant dogs at selected time points during pregnancy and at normal and antigestagen-induced luteolysis. Additionally, luteal cells from early CL were incubated with PGE2 and its effects on the ANGPT system were assessed. Whereas the luteal ANGPT1 was stable until mid-gestation, TIE1 was elevated post-implantation, their expression decreased toward prepartum luteolysis. The ANGPT2- and TIE2-mRNA did not vary during pregnancy. The ANGPT2/ANGPT1 ratio was elevated during prepartum luteolysis. PGE2 increased ANGPT2, but suppressed ANGPT1 levels. None of the ANGPT-system members was affected by antigestagen treatment in mid-pregnancy. Localization of ANGPT1 was predominantly found in the tunica intima and media of vessels and ANGPT2 stained strongly in luteal cells. Both ANGPTs were localized in macrophages. TIE1 stained in the vascular tunica media, in luteal cells and macrophages, whereas TIE2 was colocalized with ANGPT1 in vascular components. In conclusion, high expression of ANGPT1 during the increased presence of VEGFA in early canine CL implies its contribution to vascular network development. The upregulation of the ANGPT2/ANGPT1 ratio during prepartum luteolysis indicates involvement of the ANGPT system in PGF2α-mediated vascular destabilization.