Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Anna P Ponnampalam x
Clear All Modify Search
Free access

Anna P Ponnampalam and Peter A W Rogers

It has been suggested that selectin ligands expressed by the endometrial epithelium are essential for the initial adhesion of the blastocyst to the luminal epithelium of human endometrium. One of the enzymes responsible for the production of selectin ligands is fucosyltransferase 4 (FUT4), a member of α1,3 fucosyltransferases. The aims of the present study were to characterize FUT4 mRNA and protein in human endometrium during the menstrual cycle and to investigate the hormonal regulation of FUT4 whose mRNA expression was quantified by real-time PCR in fresh endometrial tissue from cycling women and protein expression was analyzed by immunohistochemistry and Western blotting. Hormonal regulation of FUT4 transcription was investigated using an endometrial explant system. FUT4 mRNA was significantly upregulated in fresh tissues during early and mid-secretory phases when compared with other phases of the menstrual cycle. FUT4 protein was localized to glandular and luminal epithelium and the expression levels followed the same pattern as for FUT4 mRNA. Our data also show that, in proliferative explants, progesterone significantly increased FUT4 transcription and translation after 24 h in culture. The inductive effect of progesterone on FUT4 transcription was lost after 48 h of treatment. Estrogen did not have any significant effects. These data suggest that the upregulation of selectin ligands in the human endometrium at the time of implantation may be mediated, at least in part, by the regulation of FUT4 expression.

Restricted access

Vishakha Mahajan, Diana Osavlyuk, Philip C Logan, Satya Amirapu and Anna P Ponnampalam

DNA methyltransferases (DNMTs) and ten-eleven translocation proteins (TETs) facilitate methylation and hydroxymethylation of DNA, respectively. DNMTs are widely studied with conflicting results on their regulation in the endometrium. While the role of TETs in the endometrium remains relatively unexplored. Deregulated expression of TETs and DNMTs are associated with endometrial pathologies. The aim of this study is to characterize the temporal TET expression in endometrium and to determine the hormonal regulation of TETs in comparison to DNMTs. mRNA expressions were quantified by real-time PCR in endometrial tissues from cycling women and localization was determined by immunohistochemistry. Hormonal regulation was investigated in endometrial epithelial and stromal cell lines following a 24 and 48 h treatment cycle. TET1 and 3 mRNA expressions were significantly upregulated in the mid-secretory phase. TET protein expression was ubiquitous in endometrial epithelium throughout the menstrual cycle except during the late-secretory phase, while stromal staining was scattered. TET1 mRNA was significantly upregulated in response to estrogen in stromal cells. Transcriptions of all three TETs were induced in response to progesterone treatment in epithelial cells. Only DNMT3b in epithelial cells and DNMT1 in stromal cells were significantly upregulated upon 24-h estrogen exposure following a significant decrease of DNMT1 when treated with 24 h of estrogen and progesterone. This study suggests that TETs are expressed in a cell-specific, dynamic manner in the endometrium and are responsive to steroid hormones. Investigating the role of TETs individually and with respect to DNMTs, will help to elucidate gene regulatory mechanisms in endometrial biology and pathologies.