Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Blanche Capel x
  • All content x
Clear All Modify Search
Free access

Blanche Capel

Work that established the testis as the driver of male development, and the Y chromosome as the bearer of the male-determining gene, established a working model, and set the stage for the molecular age of mammalian sex determination. The discovery and characterization of Sry/SRY at the top of the hierarchy in mammals launched the field in two major directions. The first was to identify the downstream transcription factors and other molecular players that drive the bifurcation of Sertoli and granulosa cell differentiation. The second major direction was to understand organogenesis of the early bipotential gonad, and how divergence of its two distinct morphogenetic pathways (testis and ovary) is regulated at the cellular level. This review will summarize the early discoveries soon after Sry was identified and focus on my study of the gonad as a model of organogenesis.

Restricted access

Tetsuhiro Yokonishi and Blanche Capel

Sertoli cells proliferate and construct seminiferous tubules during fetal life, then undergo differentiation and maturation in the prepubertal testes. In the adult testes, mature Sertoli cells maintain spermatogonia and support spermatogenesis during the entire lifetime. Although Sertoli-like cells have been derived from iPS cells, they tend to remain immature. To investigate whether Sertoli cells can spontaneously acquire the ability to support spermatogenesis when transferred into the adult testis, we transplanted mouse fetal testicular cells into a Sertoli-depleted adult testis. We found that donor E12.5, E14.5 and E16.5 Sertoli cells colonized adult seminiferous tubules and supported host spermatogenesis 2 months after transplantation, demonstrating that immature fetal Sertoli cells can undergo sufficient maturation in the adult testis to become functional. This technique will be useful to analyze the developmental process of Sertoli cell maturation and to investigate the potential of iPS-derived Sertoli cells to colonize, undergo maturation, and support spermatogenesis within the testis environment.