Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Brian W Kirkpatrick x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

James V Constantino, Ana Carranza-Martin, Christopher Premanandan, Brian W Kirkpatrick, Milo C Wiltbank, and Alvaro Garcia-Guerra

In brief

The bovine high fecundity allele, Trio, results in the occurrence of multiple ovulations and is characterized by antral follicles that develop slower and acquire ovulatory capacity at smaller sizes. This study provides novel information on the effect of the Trio allele on early folliculogenesis.

Abstract

The bovine high fecundity allele, Trio, causes overexpression in granulosa cells (GCs) of SMAD6, an inhibitor of BMP15-activated SMAD signalling. Furthermore, the Trio allele results in antral follicles that develop slower, acquire ovulatory capacity at smaller sizes, and have three-fold greater ovulation rate compared to half-sib non-carriers. The present study was designed to determine preantral follicle numbers and size in Trio carrier and non-carrier cattle testing the hypothesis that inhibition of SMAD signalling would alter preantral follicle activation and/or growth. Ovarian tissues from Trio carrier (n = 12) and non-carrier (n = 12) heifers were obtained by laparotomy after follicle wave synchronization. Follicle numbers and dimensions were determined for each stage of development (primordial, transitional, primary, and secondary) from paraffin-embedded sections. There were no differences in the number of primordial, transitional, or secondary follicles or in antral follicle count, circulating AMH, or ovarian volume between carriers and non-carriers. Trio carriers had ~2.5-fold greater (P < 0.01) number of primary follicles than non-carriers, and transitional and primary follicles were larger (~1.2-fold; P < 0.1) in Trio carriers. Oocyte volume of primordial and transitional follicles was not different between genotypes; however, oocytes were larger (P < 0.05) in primary (~1.3-fold) and secondary (~1.8-fold) follicles for Trio carriers. Granulosa cell numbers were not different (P > 0.3) between carriers and non-carriers, irrespective of the stage of development. These results suggest that, after primordial follicle activation, follicles in Trio carrier cattle have slower progression through the primary stage, hence the larger oocyte and greater number of primary follicles.

Restricted access

Rafael R Domingues, Fabiana S Andrade, Joao Paulo N Andrade, Sadrollah M Moghbeli, Victor Gomez-Leon, Guilherme Madureira, Marco R B Mello, Brian W Kirkpatrick, and Milo C Wiltbank

In brief

Follicle selection is a key event in monovular species. In this manuscript, we demonstrate the role of SMAD6 in promoting decreased granulosa cell proliferation and follicle growth rate in carriers vs noncarriers of the Trio allele and after vs before follicle deviation.

Abstract

Cattle are generally considered a monovular species; however, recently, a bovine high fecundity allele, termed the Trio allele, was discovered. Carriers of Trio have an elevated ovulation rate (3–5), while half-sibling noncarriers are monovular. Carriers of the Trio allele have overexpression in granulosa cells of SMAD6, an inhibitor of oocyte-derived regulators of granulosa cell proliferation and differentiation. In experiment 1, follicle size was tracked for each follicle during a follicular wave. Follicle growth rate was greater before vs after follicle deviation in both carriers and noncarriers. Additionally, follicle growth rate was consistently less in carriers vs noncarriers. In experiment 2, we collected granulosa cells from follicles before and after deviation for evaluation of granulosa cell gene expression. Granulosa cell proliferation was less in carriers vs noncarriers and after vs before follicle deviation (decreased expression of cell cycle genes CCNB1 and CCNA2). The decreased granulosa cell proliferation in noncarriers after deviation was associated with increased SMAD6 expression. Similarly, in experiment 3, decreased expression of SMAD6 in granulosa cells of noncarriers cultured in vitro for 60 h was associated with increased expression of cell cycle genes. This suggests that SMAD6 may not just be inhibiting follicle growth rate in carriers of Trio but may also play a role in the decreased follicle growth after deviation in noncarriers. The hypotheses were supported that (1) follicle growth and granulosa cell proliferation decrease after deviation in both carriers and noncarriers and that (2) granulosa cell proliferation is reduced in carriers compared to noncarriers.