Search Results

You are looking at 1 - 2 of 2 items for

  • Author: C Passaro x
  • Refine by Access: All content x
Clear All Modify Search
Free access

C Passaro, D Tutt, D J Mathew, J M Sanchez, J A Browne, G B Boe-Hansen, T Fair, and P Lonergan

The objectives of this study were (i) to determine whether blastocyst-induced responses in endometrial explants were detectable after 6- or 24-h co-culture in vitro; (ii) to test if direct contact is required between embryos and the endometrial surface in order to stimulate endometrial gene expression; (iii) to establish the number of blastocysts required to elicit a detectable endometrial response; (iv) to investigate if upregulation of five interferon-stimulated genes (ISGs) in the endometrium was specific to the blastocyst stage and (v) to test if alterations in endometrial gene expression can be induced by blastocyst-conditioned medium. Exposure of endometrial explants to Day 8 blastocysts in vitro for 6 or 24 h induced the expression of ISGs (MX1, MX2, OAS1, ISG15, RSAD2); expression of IFNAR1, IFNAR2, NFKB1, IL1B, STAT1, LGALS3BP, LGALS9, HPGD, PTGES, ITGB1, AKR1C4, AMD1 and AQP4 was not affected. Culture of explants in the presence of more than five blastocysts was sufficient to induce the effect, with maximum expression of ISGs occurring in the presence of 20 blastocysts. This effect was exclusive to blastocyst stage embryos; oocytes, 2-cell embryos or Day 5 morulae did not alter the relative abundance of any of the transcripts examined. Direct contact between blastocysts and the endometrial surface was not required in order to alter the abundance of these transcripts and blastocyst-conditioned medium alone was sufficient to stimulate a response. Results support the notion that local embryo–maternal interaction may occur as early as Day 8 of pregnancy in cattle.

Free access

C Passaro, D Tutt, S Bagés-Arnal, C Maicas, R Laguna-Barraza, A Gutierrez-Adán, J A Browne, D Rath, S K Behura, T E Spencer, T Fair, and P Lonergan

The aims of this study were (i) to investigate changes in the global transcriptome of bovine endometrial explants induced by exposure to blastocysts, (ii) to investigate if male and female blastocysts elicit a differential response in the endometrial transcriptome in vitro and (iii) to determine whether bovine endometrium responds to the presence of murine embryos. In Experiment 1, endometrial explants from the same uterus were cultured for 6 h with or without 20 in vitro-produced bovine blastocysts. In Experiment 2, endometrial explants were cultured with male or female bovine blastocysts produced in vitro by IVF either using sex-sorted semen or conventional unsorted semen followed by embryo sexing based on a biopsy. In Experiment 3, endometrial explants were cultured alone or in the presence of bovine blastocysts (n = 25) or murine blastocysts (n = 25). Following culture, explants were snap frozen and stored at −80°C until RNA extraction, qPCR or RNA-Seq. Culture with bovine blastocysts increased endometrial expression of 40 transcripts, all of which were interferon-tau induced. Culture with male or female bovine blastocysts increased transcript abundance of five classic interferon-stimulated genes (MX1, MX2, ISG15, OASY1, RSAD2) in explants; however, there was no difference in abundance of transcripts previously reported to be related to embryonic sex (IFNAR1, IFNAR2, CTGF, ARTN, SLC2A1, SLC2A5). Exposure to murine blastocysts did not elicit any detectable change in transcript abundance. These findings, coupled with our previous data, indicate that very local, interferon-tau-induced changes in endometrial gene expression occur in response to blastocysts; whether such changes play any role in subsequent pregnancy recognition remains to be established.