Search Results

You are looking at 1 - 2 of 2 items for

  • Author: C. A. Ziomek x
Clear All Modify Search
Free access

C. L. Chatot, R. J. Tasca and C. A. Ziomek

Summary. At least 71% of CF1 × B6SJLF1/J embryos developed from the 1-cell stage to the blastocyst stage in an optimum glutamine concentration of 1 mm, as long as glucose was present after the first 48 h of culture. Blastocysts raised under these conditions had significantly more cells than did blastocysts raised in CZB medium alone (glutamine present, glucose absent). Embryos raised in vivo accumulated 170–200 fmol glutamine/embryo/h at the unfertilized egg and 1-cell stages with a decline to 145 fmol/embryo/h at the 2-cell stage, followed by sharp increases to 400 and 850 fmol/embryo/h at the 8-cell and blastocyst stages. The presence or absence of glucose in the labelling medium had no effect on glutamine uptake by these embryos. Embryos raised in vitro accumulated 2–3 times more glutamine at stages comparable to those of embryos raised in vivo. In all cases in which 1-cell to blastocyst development in vitro was successful, glucose was present in the culture medium and the incremental uptake of glutamine between the 8-cell stage and the blastocyst stage was approximately 2-fold. This was also the increment for in-vivo raised embryos. When glucose was not present after the first 48 h, the 8-cell to blastocyst glutamine increment was not significant, and development into blastocysts was reduced. The results also show that glutamine can be used as an energy source for the generation of CO2 through the TCA cycle by all stages of preimplantation mouse development, whether raised in vivo or in vitro from the 1-cell stage. Two-cell embryos raised in vivo converted as much as 70% of the glutamine uptake into CO2, consistent with an important role for glutamine in the very earliest stages of preimplantation development. Cultured blastocysts appeared to convert less glutamine and the presence of glucose in the culture medium seemed to inhibit this conversion.

Keywords: mouse embryo; glutamine; uptake; energy substrate

Free access

C. L. Chatot, C. A. Ziomek, B. D. Bavister, J. L. Lewis and I. Torres

Summary. One-cell CF-1 × B6SJLF1/J embryos, which usually exhibit a 2-cell block to development in vitro, have been cultured to the blastocyst stage using CZB medium and a glucose washing procedure. CZB medium is a further modification of modified BMOC-2 containing an increased lactate/pyruvate ratio of 116, 1 mm-glutamine and 0·1 mm-EDTA but lacking glucose. Continuous culture of one-cell embryos in CZB medium allowed 83% of embryos to develop beyond the 2-cell stage of which 63% were morulae at 72 h of culture, but blastocysts did not develop. However, washing embryos into CZB medium containing glucose after 48 h of culture (3-4-cell stage) was sufficient to allow development to proceed, with 48% of embryos reaching the blastocyst stage by 96 h of culture. Exposure of embryos to glucose was only necessary from the 3–4-cell stage through the early morula stage since washing back into medium CZB without glucose at 72 h of culture still promoted the development of 50% of embryos to the blastocyst stage. The presence of glucose in this medium for the first 48 h of culture (1-cell to 4-cell stage) was detrimental to embryo development. Glutamine, however, exerted a beneficial effect on embryo development from the 1-cell to the 4-cell stage although its presence was not required for development to proceed during the final 48 h of culture. Blastocysts which developed under optimum conditions contained an average of 33·7 total cells. The in-vitro development of 1-cell embryos beyond the 2-cell stage in response to the removal of glucose and the addition of glutamine to the culture medium suggests that glucose may block some essential metabolic process, and that glutamine may be a preferred energy substrate during early development for these mouse embryos.

Keywords: mouse; embryo; 2-cell block; glutamine; glucose