Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Cecilia Varone x
  • All content x
Clear All Modify Search
Free access

María Guillermina Bilbao, María Paula Di Yorio, Rocío Alejandra Galarza, Cecilia Laura Varone, and Alicia Graciela Faletti

Leptin exerts both stimulatory and inhibitory effects on the ovulatory process. In this study, we investigated whether these opposite effects involve changes in the oxidative status in response to different levels of leptin. To this end, we performed both in vivo and in vitro assays using ovaries of immature rats primed with gonadotropins to induce ovulation. Superoxide dismutase (SOD) and catalase (CAT) activity, lipid peroxidation, glutathione (GSH) content, and reactive oxygen species (ROS) were studied as oxidative damage-related parameters. The expression of BCL2, BAX, and caspase 3 were measured by western blot as apoptosis-related biomarkers. The acute treatment with leptin, which inhibits ovulation, decreased SOD activity and increased active caspase 3 expression. No differences were found in CAT activity, lipid peroxidation, or total GSH. In contrast, the daily administration of leptin, which induces ovulation, decreased GSH content, ROS levels, and Bax and active caspase 3 expression, but caused no changes in other parameters. In addition, the daily administration of leptin induced follicular growth, measured by the number of antral follicles in ovarian sections. Using ovarian explant cultures, we found increased BCL2 expression and decreased SOD activity at low and high concentrations of leptin respectively. Thus, leptin can modulate the oxidative status of the ovarian tissue, during the ovulatory process, by acting on different targets according to its circulating levels. At low concentration, leptin seems to play a protective role against the oxidative stress, whereas at high concentrations, this protein seems to be involved in cell death.

Free access

Malena Schanton, Julieta L Maymó, Antonio Pérez-Pérez, Víctor Sánchez-Margalet, and Cecilia L Varone

Leptin is a homeostatic regulator in the placenta where it promotes proliferation, protein synthesis and the expression of tolerogenic maternal response molecules such as HLA-G. Leptin also exerts an anti-apoptotic action in placenta controlling the expression of p53 master cell cycle regulator under different stress conditions. On the other hand, leptin is an integrative target of different placental stimuli. The expression of leptin in placenta is regulated by hCG, insulin, steroids, hypoxia and many other growth hormones, suggesting that it might have an important endocrine function in the trophoblastic cells. The leptin expression is induced involving the cAMP/PKA or cAMP/Epac pathways which have profound actions upon human trophoblast function. The activation of PI3K and MAPK pathways also participates in the leptin expression. Estrogens play a central role during pregnancy, particularly 17β-estradiol upregulates the leptin expression in placental cells through genomic and non-genomic actions. The leptin promoter analysis reveals specific elements that are active in placental cells. The transcription factors CREB, AP1, Sp1, NFκB and the coactivator CBP are involved in the placental leptin expression. Moreover, placental leptin promoter is a target of epigenetic marks such as DNA methylation and histone acetylation that regulates not only the leptin expression in placenta during pregnancy but also determines the predisposition of acquiring adult metabolism diseases. Taken together, all these results allow a better understanding of leptin function and regulatory mechanisms of leptin expression in human placental trophoblasts, and support the importance of leptin during pregnancy and in programming adult health.

Restricted access

Malena Schanton, Julieta Maymó, María Fernanda Camisay, Antonio Pérez-Pérez, Roberto Casale, Víctor Sánchez-Margalet, Alejandra Erlejman, and Cecilia Varone

Pregnancy success requires a proper fetal maternal interaction at the establishment of implantation. Leptin has been described as a multitasking cytokine in pregnancy, particularly in the placenta, where it acts as an autocrine hormone. The expression of leptin in normal trophoblastic cells is regulated by different endogenous signals. We have previously reported that 17β-estradiol upregulates placental leptin expression through genomic and non-genomic mechanisms. To improve the knowledge of estrogen receptor mechanisms in regulating leptin gene expression, we examined transcription nuclear factor kappa B (NFκB) effect on estradiol leptin induction in human BeWo cell line and human term placental explants. We demonstrated that estradiol induction effect on leptin expression is blocked by the inhibition of NFκB signaling. We also found that the overexpression of p65 subunit, the active form of NFκB, induces leptin expression. Moreover, downregulation of estrogen receptor alpha (ERα), through a specific siRNA, abolished NFκB effect on leptin expression. We also demonstrated that ERα enhanced NFκB signaling pathway activation in trophoblastic cells. Estradiol treatment significantly increased p65 expression and phosphorylation of the inhibitory protein κB alpha (IκBα). A reporter plasmid containing NFκB elements was also induced in response to estradiol stimulation. Localization experiments revealed that estradiol treatment induced nuclear localization of overexpressed p65. Moreover, the overexpression of ERα produced a complete displacement of p65 protein to the nucleus. Finally, immunoprecipitation experiments showed the presence of a complex containing ERα and NFκB. All these evidences suggest a cooperative behavior between ERα and NFκB transcription factors to induce leptin transcription.