Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Constantine A Simintiras x
Clear All Modify Search
Free access

Constantine A Simintiras, José M Sánchez, Michael McDonald and Pat Lonergan

Successful bovine pregnancy establishment hinges on conceptus elongation, a key reproductive phenomenon coinciding with the period during which most pregnancies fail. Elongation is yet to be recapitulated in vitro, whereas in vivo it is directly driven by uterine secretions and indirectly influenced by prior circulating progesterone levels. To better understand the microenvironment evolved to facilitate this fundamental developmental event, uterine fluid was recovered on Days 12–14 of the oestrous cycle – the window of conceptus elongation initiation – from cycling heifers supplemented, or not, with progesterone. Subsequent lipidomic profiling of uterine luminal fluid by advanced high-throughput metabolomics revealed the consistent presence of 75 metabolites, of which 47% were intricately linked to membrane biogenesis, and with seven displaying a day by progesterone interaction (P ≤ 0.05). Four metabolic pathways were correspondingly enriched according to day and P4 – i.e. comprised metabolites whose concentrations differed between groups (normal vs high P4) at different times (Days 12 vs 13 vs 14). These were inositol, phospholipid, glycerolipid and primary bile acid metabolism. Moreover, P4 elevated total uterine luminal fluid lipid content on Day 14 (P < 0.0001) relative to all other comparisons. The data combined suggest that maternal lipid supply during the elongation-initiation window is primarily geared towards conceptus membrane biogenesis. In summary, progesterone supplementation alters the lipidomic profile of bovine uterine fluid during the period of conceptus elongation initiation.

Free access

Constantine A Simintiras, Thomas Fröhlich, Thozhukat Sathyapalan, Georg J Arnold, Susanne E Ulbrich, Henry J Leese and Roger G Sturmey

Oviduct fluid is the microenvironment that supports early reproductive processes including fertilisation, embryo cleavage and genome activation. However, the composition and regulation of this critical environment remain rather poorly defined. This study uses an in vitro preparation of the bovine oviduct epithelium to investigate the formation and composition of in vitro-derived oviduct fluid (ivDOF) within a controlled environment. We confirm the presence of oviduct-specific glycoprotein 1 in ivDOF and show that the amino acid and carbohydrate content resembles that of previously reported in vivo data. In parallel, using a different culture system, a panel of oviduct epithelial solute carrier genes and the corresponding flux of amino acids within ivDOF in response to steroid hormones were investigated. We next incorporated fibroblasts directly beneath the epithelium. This dual culture arrangement represents more faithfully the in vivo environment and impacts on ivDOF composition. Lastly, physiological and pathophysiological endocrine states were modelled and their impact on the in vitro oviduct preparation was evaluated. These experiments help clarify the dynamic function of the oviduct in vitro and suggest a number of future research avenues, such as investigating epithelial–fibroblast interactions, probing the molecular aetiologies of subfertility and optimising embryo culture media.