Search Results

You are looking at 1 - 10 of 12 items for

  • Author: Da Li x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Ke-Ming Xie, Xiao-Fan Hou, Ming-Qing Li, and Da-Jin Li

Nometastatic gene 23-H1 (NME1, also known as nm23-H1) is a wide-spectrum tumor metastasis suppressor gene that plays an important role in suppressing the invasion and metastasis of tumor cells. It has been demonstrated that NME1 is also expressed in human first-trimester placenta, but its function at maternal–fetal interface is not clear. The present study aimed to elucidate the biological function of NME1 at the maternal–fetal interface, especially on invasion of the human extravillous cytotrophoblasts (EVCTs). NME1 has been identified in both human trophoblast cells and decidual stromal cells (DSCs) in early pregnancy. We have proved that NME1 silencing in vitro increases the titin protein translation in the invasive EVCTs. Moreover, NME1 can inactivate the phospho-extracellular signal-regulated kinase 1/2 (P-ERK1/2) in trophoblasts in a time-dependent manner, and U0126, an inhibitor of MAPK/ERK, can inhibit partly the enhanced invasiveness and titin expression in trophoblasts induced by NME1 silencing. Interestingly, the expression of NME1 in either villi or decidua is higher significantly in miscarriage than that of the normal early pregnancy. These findings first reveal that the NME1 expressed in trophoblasts and DSCs controls the inappropriate invasion of human first-trimester trophoblast cells via MAPK/ERK1/2 signal pathway, and the overexpression of NME1 at maternal–fetal interface leads to pregnancy wastage.

Free access

Hui Li, Yu-Han Meng, Wen-Qing Shang, Li-Bing Liu, Xuan Chen, Min-Min Yuan, Li-Ping Jin, Ming-Qing Li, and Da-Jin Li

Chemokine CCL24, acting through receptor CCR3, is a potent chemoattractant for eosinophil in allergic diseases and parasitic infections. We recently reported that CCL24 and CCR3 are co-expressed by trophoblasts in human early pregnant uterus. Here we prove with evidence that steroid hormones estradiol (E), progesterone (P), and human chorionic gonadotropin (hCG), as well as decidual stromal cells (DSCs) could regulate the expression of CCL24 and CCR3 of trophoblasts. We further investigate how trophoblast-derived CCL24 mediates the function of trophoblasts in vitro, and conclude that CCL24/CCR3 promotes the proliferation, viability and invasiveness of trophoblasts. In addition, analysis of the downstream signaling pathways of CCL24/CCR3 show that extracellular signal-regulated kinases (ERK1/2) and phosphoinositide 3-kinase (PI3K) pathways may contribute to the proliferation, viability and invasiveness of trophoblasts by activating intracellular molecules Ki67 and matrix metallopeptidase 9 (MMP9). However, we did not observe any inhibitory effect on trophoblasts when blocking c-Jun N-terminal kinase (JNK) or p38 pathways. In conclusion, our data suggests that trophoblast-derived CCL24 at the maternal-fetal interface promotes trophoblasts cell growth and invasiveness by ERK1/2 and PI3K pathways. Meanwhile, pregnancy-related hormones (P and hCG), as well as DSCs could up-regulate CCL24/CCR3 expression in trophoblasts, which may indirectly influence the biological functions of trophoblasts. Thus, our results provide a possible explanation for the growth and invasion of trophoblasts in human embryo implantation.

Free access

Hui-Li Yang, Wen-Jie Zhou, Kai-Kai Chang, Jie Mei, Li-Qing Huang, Ming-Yan Wang, Yi Meng, Si-Yao Ha, Da-Jin Li, and Ming-Qing Li

The dysfunction of NK cells in women with endometriosis (EMS) contributes to the immune escape of menstrual endometrial fragments refluxed into the peritoneal cavity. The reciprocal communications between endometrial stromal cells (ESCs) and lymphocytes facilitate the development of EMS. However, the mechanism of these communications on cytotoxicity of natural killer (NK) cells in endometriotic milieus is still largely unknown. To imitate the local immune microenvironment, the co-culture systems of ESCs from patients with EMS and monocyte-derived macrophages or of ESCs, macrophages and NK cells were constructed. The cytokine levels in the co-culture unit were evaluated by ELISA. The expression of functional molecules in NK cells was detected by flow cytometry (FCM). The NK cell behaviors in vitro were analyzed by cell counting kit-8 and cytotoxic activation assays. After incubation with ESCs and macrophages, the expression of CD16, NKG2D, perforin and IFN-γ, viability and cytotoxicity of NK cells were significantly downregulated. The secretion of interleukin (IL)-1β, IL-10 and transforming growth factor (TGF)-β in the co-culture system of ESCs and macrophages was increased. Exposure with anti-IL-10 receptor β neutralizing antibody (αhIL-10Rβ) or αTGF-β could partly reverse these effects of ESCs and macrophages on NK cells in vitro. These results suggest that the interaction between macrophages and ESCs downregulates cytotoxicity of NK cells possibly by stimulating the secretion of IL-10 and TGF-β, and may further trigger the immune escape of ectopic fragments and promote the occurrence and the development of EMS.

Free access

Wen-Hui Zhou, Lin Dong, Mei-Rong Du, Xiao-Yong Zhu, and Da-Jin Li

Immune regulation during pregnancy is complex, and thus an optimal therapy for pregnancy complications is always a big challenge to reproductive medicine. Cyclosporin A (CsA), a potent immunosuppressant, prevents rejection of allografts by hosts, but little is known about the modulating effect of CsA on the materno-fetal relationship. Here, pregnant CBA/J females mated with DBA/2 males as an abortion-prone model were administered with CsA on day 4.5 of gestation, and the pregnant CBA/J females mated with BALB/c males were established as successful pregnancy control. It was demonstrated that administration of CsA at the window of implantation significantly up-regulated the expression of CTLA-4, while down-regulating the levels of CD80, CD86, and CD28 at the materno-fetal interface in the CBA/J×DBA/2 abortion-prone matings, and the embryo resorption rate of the abortion-prone matings reduced significantly after CsA treatment, implying that modulation of costimulatory molecule expression by CsA might contribute to preventing the fetus from maternal immune attack. In addition, treatment with CsA induced enhanced growth and reduced cell apoptosis of the murine trophoblast cells. Together, these findings indicate that CsA has a beneficial effect on the materno-fetal interface in abortion-prone matings, leading to a pregnancy outcome improvement, which might provide new therapeutics for spontaneous pregnancy wastage.

Free access

Yi Lin, Huiqi Wang, Wenjing Wang, Shan Zeng, Yanmin Zhong, and Da-Jin Li

Both regulatory T cells and regulatory natural killer (NK) cells may play essential roles in the maintenance of pregnancy. In this study, we show that a significantly high percentage of spontaneous embryo loss was observed in both allogeneic and syngeneic pregnant non-obese diabetic (NOD) mice. The percentage of embryo loss in allogeneic pregnant mice was further increased by the administration of anti-asialo ganglio-N-tetraosylceramide to deplete NK cells, but was decreased by the adoptive transfer of ITGA2+ISG20+ (CD49b+ CD25+) NK cells from normal mice. No such trend was observed in syngeneic pregnant NOD mice. The pattern of CXCR4 (specific receptor for CXCL12) expression on NK cells was analyzed and NK-cell migration was confirmed by in vitro and in vivo migratory assays. Since CXCL12 production by murine trophoblast cells was confirmed previously, our findings suggest that the recruitment of peripheral CXCR4-expressing ITGA2+ISG20+ NK cells into pregnant uteri may be important in the regulation of feto-maternal tolerance.

Free access

Ji-Wen Yang, Zi-Li Lei, Yi-Liang Miao, Jun-Cheng Huang, Li-Hong Shi, Ying-Chun OuYang, Qing-Yuan Sun, and Da-Yuan Chen

This study was carried out to investigate the contributions of chromosomes to spindle assembly in mouse oocytes. We generated two groups of cytoplasts (holo- and hemi-cytoplasts) by enucleation of germinal vesicle (GV), metaphase I (MI), and metaphase II (MII) oocytes using micromanipulation technology. After in vitro culture for 18 h, spindles with different shapes (bi-, mono-, or multipolar) formed in most of these cytoplasts except in hemi-GV cytoplasts. Two or more spindles were observed in most of holo-GV, holo-MI, and holo-MII cytoplasts (76.1, 77.0, and 83.7% respectively). However, the proportions of hemi-MI and hemi-MII cytoplasts with multiple sets of spindles decreased to 17.6 and 20.7% respectively. A single bipolar spindle was observed in each sham-operated oocyte generated by removing different volumes of cytoplasm from the oocytes and keeping nuclei intact. Localization of γ-tubulin showed that microtubule organizing centers (MTOCs) were dispersed at each pole of the multiple sets of spindles formed in holo-cytoplasts. However, most of the MTOCs aggregated at the two poles of the bipolar spindle in sham-operated oocytes. Our results demonstrate that chromosomes are not essential for initiating spindle assembly but for directing distinct MTOCs to aggregate to form a bipolar spindle. Some factors of undetermined nature may pre-exist in an inactive form in GV-stage ooplasm, serving as initiators of spindle assembly upon their activation. Moreover, GV materials released into the cytoplasm may facilitate spindle assembly in normal meiotic maturation.

Free access

Shu-Zhen Liu, Li-Juan Yao, Man-Xi Jiang, Zi-Li Lei, Li-Sheng Zhang, Yan-Ling Zhang, Qing-Yuan Sun, Yue-Liang Zheng, Xiang-Fen Song, and Da-Yuan Chen

In this study, we investigated the development, the cell number of the blastocyst, and apoptosis in rabbit nuclear transfer (NT) embryos derived from adult fibroblasts and cumulus cells as compared with embryos derived from in vivo fertilization and in vitro culture. The developmental rate and the total cell number of the blastocyst were significantly lower in NT embryos than in fertilized embryos (FEs). The type of donor cells did not affect the embryonic developmental rate and the total cell number of blastocysts in NT groups. The present study investigated the onset and the frequency of apoptosis in NT embryos and FEs by using a terminal deoxynucleotidyl transferase-mediated dUTP nick and labeling (TUNEL) assay. The earliest positive TUNEL signals were detected at the eight-cell stage in NT embryos and at the morula stage in FEs. The apoptotic index of the total blastocysts, the inner cell mass and the trophoderm was greatly higher in the NT embryos than in FEs. Moreover, the apoptotic index of the blastocyst from fibroblasts was significantly higher than that of the blastocyst from cumulus cells.

Free access

Li-Ying Yan, Jun-Cheng Huang, Zi-Yu Zhu, Zi-Li Lei, Li-Hong Shi, Chang-Long Nan, Zhen-Jun Zhao, Ying-Chun OuYang, Xiang-Fen Song, Qing-Yuan Sun, and Da-Yuan Chen

The assembly of microtubules and the distribution of NuMA were analyzed in rabbit oocytes and early cloned embryos. α-Tubulin was localized around the periphery of the germinal vesicle (GV). After germinal vesicle breakdown (GVBD), multi-arrayed microtubules were found tightly associated with the condensed chromosomes and assembled into spindles. After the enucleated oocyte was fused with a fibroblast, microtubules were observed around the introduced nucleus in most reconstructed embryos and formed a transient spindle 2–4 h post-fusion (hpf). A mass of microtubules surrounded the swollen pseudo-pronucleus 5 hpf and a normal spindle was formed 13 hpf in cloned embryos. NuMAwas detected in the nucleus in germinal vesicle-stage oocytes, and it was concentrated at the spindle poles in both meiotic and mitotic metaphase. In both donor cell nucleus and enucleated oocyte cytoplasm, NuMA was not detected, while NuMA reappeared in pseudo-pronucleus as reconstructed embryo development proceeded. However, no evident NuMA staining was observed in the poles of transient spindle and first mitotic spindle in nuclear transfer eggs. These results indicate that NuMA localization and its spindle pole tethering function are different during rabbit oocyte meiosis and cloned embryo mitosis.

Free access

Ping Zhou, Yan-Guang Wu, Qing Li, Guo-Cheng Lan, Gang Wang, Da Gao, and Jing-He Tan

To improve in vitro maturation (IVM) of denuded oocytes (DOs), we observed the interactive effects of cysteamine, cystine and cumulus cells on the glutathione (l-γ-glutamyl-l-cysteinyl-glycine; GSH) level and developmental capacity of goat IVM oocytes. Cysteamine supplementation increased the GSH level and blastocyst rates of both cumulus–oocyte complexes (COCs) and DOs, while the addition of cystine increased the GSH level and blastulation only in the presence of cumulus cells (COCs or DOs co-cultured on a cumulus cell monolayer). Simultaneous supplementation of cysteamine and cystine increased the GSH content and blastulation of co-cultured DOs to a level similar to that of COCs matured without thiol supplementation. Co-culture without thiol supplementation improved DOs' GSH synthesis but not blastulation. The results suggest that DOs cannot utilize cystine for GSH synthesis unless exogenous cysteamine is supplied by either cumulus cells or supplementation. Thus, while the addition of cystine alone is enough to improve IVM of COCs, improvement of DOs requires supplementation of both cystine and cysteamine. Synergic actions between cysteamine, cystine and cumulus cells restore the GSH level and developmental capacity of goat DOs.

Free access

Zhen-Yu Zheng, Qing-Zhang Li, Da-Yuan Chen, Heide Schatten, and Qing-Yuan Sun

The protein kinase Cs (PKCs) are a family of Ser/Thr protein kinases categorized into three subfamilies: classical, novel, and atypical. The phosphorylation of PKC in germ cells is not well defined. In this study, we described the subcellular localization of phopho-PKC in the process of mouse oocyte maturation, fertilization, and early embryonic mitosis. Confocal microscopy revealed that phospho-PKC (pan) was distributed abundantly in the nucleus at the germinal vesicle stage. After germinal vesicle breakdown, phospho-PKC was localized in the vicinity of the condensed chromosomes, distributed in the whole meiotic spindle, and concentrated at the spindle poles. After metaphase I, phospho-PKC was translocated gradually to the spindle mid-zone during emission of the first polar body. After sperm penetration and electrical activation, the distribution of phospho-PKC was moved from the spindle poles to the spindle mid-zone. After the extrusion of the second polar body (PB2) phospho-PKC was localized in the area between the oocyte and the PB2. In fertilized eggs, phospho-PKC was concentrated in the pronuclei except for the nucleolus. Phospho-PKC was dispersed after pronuclear envelope breakdown, but distributed on the entire spindle at mitotic metaphase. The results suggest that PKC activation may play important roles in regulating spindle organization and stabilization, polar-body extrusion, and nuclear activity during mouse oocyte meiosis, fertilization, and early embryonic mitosis.