Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Dan Li x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

Tengteng Li, Jiajia Fei, Huihui Yu, Xingxing Wang, Dan Li, and Zongzhi Yin

The mechanisms underlying pre-labor uterine quiescence and uterine atony during overdistention are unclear. TREK1 (a two-pore domain potassium channel) and hypoxia-inducible factor-1α (HIF-1α) are activated by mechanical stretch, and their expression is upregulated by decreased uterine contractility. HIF-1α is a nuclear factor which regulates numerous target proteins, but whether it regulates TREK1 during uterine stretch to cause uterine quiescence and/or atony is unclear. We investigated uterine contractility at different gestational stages in rats, as well as in non-pregnant uteri, which were induced by prolonged stretching and hypoxia. We also assessed the effects of incubating the uteri with or without echinomycin or L-methionine. Moreover, we analyzed HIF-1α and TREK1 expression levels in each group, as well as at various gestational stages of pregnant human uteri. We found that contractility was significantly decreased in pregnant uteri when compared with non-pregnant uteri, and this decrease was associated with increases in HIF-1α and TREK1 expression levels. HIF-1α and TREK1 expression levels in human uteri increased with the gestational length. Decreased uterine contractility and increased HIF-1α and TREK1 expression levels were also observed in non-pregnant rat uteri under 8 g of stretching tension or hypoxia. Inhibition of hypoxia with echinomycin restored normal uterine contractility, while HIF-1α and TREK1 protein expression remained reduced. TREK1 inhibition with L-methionine also restored uterine contractility under tension or hypoxia. In conclusion, we demonstrated that prolonged stretching induces myometrial hypoxia, increases TREK1 expression, and relaxes the myometrium, which may contribute to uterine quiescence and atony.

Open access

Cai Chen, Han Wu, Dan Shen, Saisai Wang, Li Zhang, Xiaoyan Wang, Bo Gao, Tianwen Wu, Bichun Li, Kui Li, and Chengyi Song

The similarities and differences of small RNAs in seminal plasma, epididymal sperm and ejaculated sperm remain largely undefined. We conducted a systematic comparative analysis of small RNA profiles in pig ejaculated sperm, epididymal sperm and seminal plasma and found that the diversity distribution of small RNA species was generally similar, whereas the abundance of small RNAs is dramatically different across the three libraries; miRNAs and small RNAs derived from rRNA, tRNA, small nuclear RNA, 7SK RNA, NRON RNA and cis-regulatory RNA were enriched in the three libraries, but piRNA was absent. A large population of small RNAs from ejaculated sperm are ejaculated sperm specific, and only 8–30% of small RNAs overlapped with those of epididymal sperm or seminal plasma and a small proportion (5–18%) of small RNAs were shared in the three libraries, suggesting that, in addition to the testes, sperm RNAs may also originate from seminal plasma, epididymis as well as other resources. Most miRNAs were co-distributed but differentially expressed across the three libraries, with epididymal sperm exhibiting the highest abundance, followed by ejaculated sperm and seminal plasma. The prediction of target genes of the top 10 highly expressed miRNAs across the three libraries revealed that these miRNAs may be involved in spermatogenesis, zygote development and the interaction between the environment and animals. Our study provides the first description of the similarities and differences of small RNA profiles in ejaculated sperm, epididymal sperm and seminal plasma and indicates that sperm RNA may have origins other than the testes.

Free access

Wen-jing Guo, Yi-cheng Wang, Yong-dan Ma, Zhi-hui Cui, Li-xue Zhang, Li Nie, Xue-qin Zhang, Mei-jiao Wang, Jin-hu Zhang, Dong-zhi Yuan, and Li-min Yue

The incidence of polycystic ovary syndrome (PCOS) due to high-fat diet (HFD) consumption has been increasing significantly. However, the mechanism by which a HFD contributes to the pathogenesis of PCOS has not been elucidated. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key protein that regulates cholesterol metabolism. Our previous study revealed abnormally high PCSK9 levels in serum from patients with PCOS and in serum and hepatic and ovarian tissues from PCOS model mice, suggesting that PCSK9 is involved in the pathogenesis of PCOS. However, the factor that induces high PCSK9 expression in PCOS remains unclear. In this study, Pcsk9 knockout mice were used to further explore the role of PCSK9 in PCOS. We also studied the effects of a HFD on the expression of PCSK9 and sterol regulatory element-binding protein 2 (SREBP2), a regulator of cholesterol homeostasis and a key transcription factor that regulates the expression of PCSK9, and the roles of these proteins in PCOS pathology. Our results indicated HFD may play an important role by inducing abnormally high PCSK9 expression via SREBP2 upregulation. We further investigated the effects of an effective SREBP inhibitor, fatostain, and found that it could reduce HFD-induced PCSK9 expression, ameliorate hyperlipidemia and improve follicular development in PCOS model mice. Our study thus further elucidates the important role of an HFD in the pathogenesis of PCOS and provides a new clue in the prevention and treatment of this disorder.

Free access

Li Nie, Li-xue Zhang, Yi-cheng Wang, Yun Long, Yong-dan Ma, Lin-chuan Liao, Xin-hua Dai, Zhi-hui Cui, Huan Liu, Zhao-qi Wang, Zi-yang Ma, Dong-zhi Yuan, and Li-min Yue

Uterine receptivity to the embryo is crucial for successful implantation. The establishment of uterine receptivity requires a large amount of energy, and abnormal energy regulation causes implantation failure. Glucose metabolism in the endometrium is tissue specific. Glucose is largely stored in the form of glycogen, which is the main energy source for the endometrium. AMP-activated protein kinase (AMPK), an important energy-sensing molecule, is a key player in the regulation of glucose metabolism and its regulation is also tissue specific. However, the mechanism of energy regulation in the endometrium for the establishment of uterine receptivity remains to be elucidated. In this study, we aimed to investigate the energy regulation mechanism of mouse uterine receptivity and its significance in embryo implantation. The results showed that the AMPK, p-AMPK, glycogen synthase 1, and glycogen phosphorylase M levels and the glycogen content in mouse endometrial epithelium varied in a periodic manner under regulation by the ovarian hormone. Specifically, progesterone significantly activated AMPK, promoted glycogenolysis, and upregulated glycogen phosphorylase M expression. AMPK regulated glycogen phosphorylase M expression and promoted glycogenolysis. AMPK was also found to be activated by changes in the energy or glycogen of the endometrial epithelial cells. The inhibition of AMPK activity or glycogenolysis altered the uterine receptivity markers during the window of implantation and ultimately interfered with implantation. In summary, consistency and synchronization of AMPK and glycogen metabolism constitute the core regulatory mechanism in mouse endometrial epithelial cells involved in the establishment of uterine receptivity.

Restricted access

Zhi-hui Cui, Yong-dan Ma, Yi-cheng Wang, Huan Liu, Jia-wei Song, Li-xue Zhang, Wen-jing Guo, Xue-qin Zhang, Sha-sha Tu, Dong-zhi Yuan, Jin-hu Zhang, Li Nie, and Li-min Yue

In brief

Impaired spermatogenesis resulting from disturbed cholesterol metabolism due to intake of high-fat diet (HFD) has been widely recognized, however, the role of preprotein invertase subtilin 9 (PCSK9), which is a negative regulator of cholesterol metabolism, has never been reported. This study aims to reveal the role of PCSK9 on spermatogenesis induced by HFD in mice.

Abstract

Long-term consumption of a high-fat diet (HFD) is an important factor that leads to impaired spermatogenesis exhibiting poor sperm quantity and quality. However, the mechanism of this is yet to be elucidated. Disrupted cholesterol homeostasis is one of many crucial pathological factors which could contribute to impaired spermatogenesis. As a negative regulator of cholesterol metabolism, preprotein invertase subtilin 9 (PCSK9) mediates low density lipoprotein receptor (LDLR) degradation to the lysosome, thereby reducing the expression of LDLR on the cell membrane and increasing serum low-density lipoprotein cholesterol level, resulting in lipid metabolism disorders. Here, we aim to study whether PCSK9 is a pathological factor for impaired spermatogenesis induced by HFD and the underlying mechanism. To meet the purpose of our study, we utilized wild-type C57BL/6 male mice and PCSK9 knockout mice with same background as experimental subjects and alirocumab, a PCSK9 inhibitor, was used for treatment. Results indicated that HFD induced higher PCSK9 expression in serum, liver, and testes, and serum PCSK9 is negatively correlated with spermatogenesis, while both PCSK9 inhibitor treatment and PCSK9 knockout methodologies ameliorated impaired lipid metabolism and spermatogenesis in mice fed a HFD. This could be due to the overexpression of PCSK9 induced by HFD leading to dyslipidemia, resulting in testicular lipotoxicity, thus activating the Bcl-2–Bax–Caspase3 apoptosis signaling pathway in testes, particularly in Leydig cells. Our study demonstrates that PCSK9 is an important pathological factor in the dysfunction of spermatogenesis in mice induced by HFD. This finding could provide innovative ideas for the diagnosis and treatment of male infertility.