Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Daniel R Brison x
Clear All Modify Search
Free access

Daniel R Brison

Free access

Lisa Shaw, Sharon F Sneddon, Daniel R Brison and Susan J Kimber

Identification and characterisation of differentially regulated genes in preimplantation human embryonic development are required to improve embryo quality and pregnancy rates in IVF. In this study, we examined expression of a number of genes known to be critical for early development and compared expression profiles in individual preimplantation human embryos to establish any differences in gene expression in fresh compared to frozen–thawed embryos used routinely in IVF. We analysed expression of 19 genes by cDNA amplification followed by quantitative real-time PCR in a panel of 44 fresh and frozen–thawed human preimplantation embryos. Fresh embryos were obtained from surplus early cleavage stage embryos and frozen–thawed embryos from cryopreserved 2PN embryos. Our aim was to determine differences in gene expression between fresh and frozen–thawed human embryos, but we also identified differences in developmental expression patterns for particular genes. We show that overall gene expression among embryos of the same stage is highly variable and our results indicate that expression levels between groups did differ and differences in expression of individual genes was detected. Our results show that gene expression from frozen–thawed embryos is more consistent when compared with fresh, suggesting that cryopreserved embryos may represent a reliable source for studying the molecular events underpinning early human embryo development.

Free access

Peter T Ruane, Rebekka Koeck, Stéphane C Berneau, Susan J Kimber, Melissa Westwood, Daniel R Brison and John D Aplin

In vitro culture during assisted reproduction technologies (ARTs) exposes pre-implantation embryos to environmental stressors, such as non-physiological nutritional, oxidative and osmotic conditions. The effects on subsequent implantation are not well understood but could contribute to poor ART efficiency and outcomes. We have used exposure to hyperosmolarity to investigate the effects of stress on the ability of embryos to interact with endometrial cells in an in vitro model. Culturing mouse blastocysts for 2 h in medium with osmolarity raised by 400 mosmol induced blastocoel collapse and re-expansion, but did not affect subsequent attachment to, or invasion of, the endometrial epithelial Ishikawa cell line. Inhibition of stress-responsive c-Jun N-terminal kinase (JNK) activity with SP600125 did not affect the intercellular interactions between these embryos and the epithelial cells. Four successive cycles of hyperosmotic stress at E5.5 had no effect on attachment, but promoted embryonic breaching of the epithelial cell layer by trophoblast giant cells in a JNK-dependent manner. These findings suggest that acute stress at the blastocyst stage may promote trophoblast breaching of the endometrial epithelium at implantation and implicates stress signalling through JNK in the process of trophectoderm differentiation into the invasive trophoblast necessary for the establishment of pregnancy. The data may lead to increased understanding of factors governing ART success rates and safety.

Restricted access

Niamh Lewis, Katrin Hinrichs, Henry J Leese, Caroline McGregor Argo, Daniel R Brison and Roger G Sturmey

The use of in vitro embryo production in the horse is increasing in clinical and research settings; however, protocols are yet to be optimised. Notably, the two most commonly used base media for in vitro maturation (IVM) supply glucose at markedly different concentrations: physiological (5.6 mM, M199) or supraphysiological (17 mM, DMEM/F-12). Exposure to high glucose has detrimental effects on oocytes and early embryos in many mammalian species, but the impact has not yet been examined in the horse. To address this, we compared the energy metabolism of equine COCs matured in M199-based maturation medium containing either 5.6 or 17 mM glucose, as well as expression of key genes in oocytes and cumulus cells. Oocytes were fertilised by ICSI and cultured. Analysis of spent medium revealed that COC glucose consumption and production of lactate and pyruvate were similar between treatments. However, the glycolytic index was decreased at 17 mM and analysis of mitochondrial function of COCs revealed that IVM in 17 mM glucose was associated with decreased ATP-coupled respiration and increased non-mitochondrial respiration compared to that for 5.6 mM glucose. We also found that the metabolic enzyme lactate dehydrogenase-A (LDHA) was downregulated in cumulus cells of oocytes that completed IVM in 17 mM glucose. There was no difference in maturation or blastocyst rates. These data indicate that COC mitochondrial function and gene expression are altered by high glucose concentration during IVM. Further work is needed to determine if these changes are associated with developmental changes in the resulting offspring.