Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Daniele Lisboa Ribeiro x
Clear All Modify Search
Free access

Maria Etelvina Pinto-Fochi, Eloísa Zanin Pytlowanciv, Vanessa Reame, Alex Rafacho, Daniele Lisboa Ribeiro, Sebastião Roberto Taboga and Rejane Maira Góes

This study evaluated the impact of a high-fat diet (HFD) during different stages of rat life, associated or not with maternal obesity, on the content of sex steroid hormones and morphophysiology of Leydig cells. The following periods of development were examined: gestation (O1), gestation and lactation (O2), from weaning to adulthood (O3), from lactation to adulthood (O4), gestation to adulthood (O5), and after sexual maturation (O6). The HFD contained 20% unsaturated fat, whereas the control diet had 4% fat. Maternal obesity was induced by feeding HFD 15 weeks before mating. All HFD groups presented increased body weight, hyperinsulinemia and reduced insulin sensitivity. Except for O1, all HFD groups exhibited a higher adiposity index, hyperleptinemia, reduced testosterone and estradiol testicular levels, and decreased testicular 17β-HSD enzyme . Morphometrical analyses indicated atrophy of Leydig cells in the O2 group. Myelin vesicles were observed in the mitochondrial matrix of Leydig cells in O3, O4, O5 and O6, and autophagosomes containing mitochondria were found in O5 and O6. In conclusion, HFD feeding, before or after sexual maturation, reduces the functional capacity of rat Leydig cells. Maternal obesity associated with HFD during pregnancy/lactation prejudices Leydig cell steroidogenesis and induces its atrophy in adulthood, even if it is replaced by a conventional diet at later stages of life. Regardless of the life period of exposure to HFD, deregulation of leptin is the main factor related to steroidogenic impairment of Leydig cells, and, in groups exposed for longer periods (O3, O4, O5 and O6), this is worsened by structural damage and mitochondrial degeneration of these cells.

Restricted access

Isabella Silva Cassimiro, Amanda Rodrigues Cruz, Beatriz Pelegrini Bosque, Laura Calazans de Melo Gomes, Renata Graciele Zanon, Jéssica Regina da Costa Silva, Patrícia Tieme Fujimura, Carlos Ueira-Vieira and Daniele Lisboa Ribeiro

The prostate development has an important postnatal period where cell proliferation begins at the first days after birth and is related to gland growth and ramification. Any metabolic and/or hormonal changes occurring during the postnatal period can interfere with prostate branching. Hyperglycemia is a common condition in low-weight preterm babies at neonatal period and also a disorder found in the offspring of obese mothers. Thus, this study aimed to investigate the in vitro effects of a glucose-rich environment during prostate postnatal development. Wistar rats prostate were removed at birth and cultured for 1, 2 and 3 days in DMEM under normal (5.5 mM) or elevated (7 and 25 mM) glucose concentrations. Samples were processed for morphological analysis, PCNA and smooth muscle α-actin immunohistochemistry, evaluation of active caspase-3, ERK1/2 and Wnt5a gene expression. High glucose concentrations reduced the number of prostatic buds and proliferating cells. The natural increase in smooth muscle cells and collagen deposition observed in control prostates during the first 3 days of development was reduced by elevated glucose concentrations. The amount of active caspase-3 was higher in prostates incubated at 7 mM and TGF-β levels also increased sharply after both glucose concentrations. Additionally, high glucose environment decreased ERK 1/2 activation and increased Wnt5a expression. These data show that high levels of glucose during the first postnatal days affected prostate development by inhibiting cell proliferation which impairs bud branching and this was associated with anti-proliferative signals such as decreased ERK1/2 activation and increased Wnt5a expression.