During the capacitation process, spermatozoa acquire the ability to fertilize an oocyte, and upregulation of cAMP-dependent protein tyrosine phosphorylation occurs. Recently, Src family tyrosine kinase (SFK) has been involved in spermatozoa capacitation as a key PKA-dependent tyrosine kinase in several species. This work investigates the expression and role of SFK in porcine spermatozoa. SFK members Lyn and Yes are identified in porcine spermatozoa by western blotting as well as two proteins named SFK1 and SFK2 were also detected by their tyrosine 416 phosphorylation, a key residue for SFK activation. Spermatozoa with SFK1 and SFK2 increase their Y416 phosphorylation time-dependently under capacitating conditions compared with noncapacitating conditions. The specific SFK inhibitor SU6656 unaffected porcine spermatozoa motility or viability. Moreover, SFK inhibition in spermatozoa under capacitating conditions leads to a twofold increase in both nonstimulated and calcium-induced acrosome reaction. Our data show that capacitating conditions lead to a time-dependent increase in actin polymerization in boar spermatozoa and that long-term incubation with SFK inhibitor causes a reduction in the F-actin content. In summary, this work shows that the SFK members Lyn and Yes are expressed in porcine spermatozoa and that SFK1 and SFK2 are phosphorylated (activated) during capacitation. Our results point out the important role exerted by SFK in the acrosome reaction, likely mediated in part by its involvement in the actin polymerization process that accompanies capacitation, and rule out its involvement in porcine spermatozoa motility.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: David Martin-Hidalgo x
- Refine by Access: All content x
María J Bragado, María C Gil, David Martin-Hidalgo, Ana Hurtado de Llera, Noelia Bravo, Antonio D Moreno, and Luis J Garcia-Marin
Luis Águila, Ricardo Felmer, María Elena Arias, Felipe Navarrete, David Martin-Hidalgo, Hoi Chang Lee, Pablo Visconti, and Rafael Fissore
The efficiency of intracytoplasmic sperm injection (ICSI) in the bovine is low compared to other species. It is unknown whether defective oocyte activation and/or sperm head decondensation limit the success of this technique in this species. To elucidate where the main obstacle lies, we used homologous and heterologous ICSI and parthenogenetic activation procedures. We also evaluated whether in vitro maturation negatively impacted the early stages of activation after ICSI. Here we showed that injected bovine sperm are resistant to nuclear decondensation by bovine oocytes and this is only partly overcome by exogenous activation. Remarkably, when we used heterologous ICSI, in vivo-matured mouse eggs were capable of mounting calcium oscillations and displaying normal PN formation following injection of bovine sperm, although in vitro-matured mouse oocytes were unable to do so. Together, our data demonstrate that bovine sperm are especially resistant to nuclear decondensation by in vitro-matured oocytes and this deficiency cannot be simply overcome by exogenous activation protocols, even by inducing physiological calcium oscillations. Therefore, the inability of a suboptimal ooplasmic environment to induce sperm head decondensation limits the success of ICSI in the bovine. Studies aimed to improve the cytoplasmic milieu of in vitro-matured oocytes and to replicate the molecular changes associated with in vivo capacitation and acrosome reaction will deepen our understanding of the mechanism of fertilization and improve the success of ICSI in this species.