Search Results
You are looking at 1 - 2 of 2 items for
- Author: E M Menkhorst x
- Refine by access: All content x
Search for other papers by E M Menkhorst in
Google Scholar
PubMed
Search for other papers by S Cui in
Google Scholar
PubMed
Search for other papers by L Selwood in
Google Scholar
PubMed
We report the first immunocontraceptive trial in mammals using a uterine-secreted protein, the marsupial shell coat protein 4 (CP4). The marsupial shell coat, which surrounds the conceptus for 60–80% of gestation, is secreted by the uterine epithelium. Following immunization against glutathione S-transferase (GST)-CP4, the fertility of female common brushtail possums (n=6) was significantly reduced (P=0.000), and this reduction in fertility was positively correlated with the maximum GST-CP4 humoral immune response (P=0.025). Ultrastructural examination of the reproductive tract indicated that the cell-mediated immune response against GST-CP4 targeted the shell coat, the shell-free conceptus and the uterine glandular epithelium, thus preventing normal conceptus development and uterine secretion of shell coat proteins and nutrients. These results show that uterine-secreted proteins are promising immunocontraceptive targets, especially in pest mammal species, e.g. possum, rabbit and horse, that have uterine-secreted additions to embryonic coats, or that have late implantation requiring uterine nutrient provisioning from secretions.
Search for other papers by E M Menkhorst in
Google Scholar
PubMed
Search for other papers by L A Hinds in
Google Scholar
PubMed
Search for other papers by L Selwood in
Google Scholar
PubMed
Close examination of hormonal profiles and uterine morphology in the marsupial reproductive cycle highlights significant differences between pregnant and non-pregnant cycles. In the polyovular dasyurid marsupial Sminthopsis macroura, we identified changes associated with gestation by comparing ovarian and plasma progesterone concentrations, uterine weights, uterine epithelial mitoses, body weights and gestation lengths between pregnant and non-pregnant luteal phases. The plasma progesterone profile of S. macroura was biphasic, peaking during unilaminar blastocyst expansion and on the day of implantation. Periods of rapid embryonic development were associated with increasing plasma progesterone concentrations and animal body weight. For the first time in a polyovular marsupial, we identified 1) a correlation between ovarian progesterone concentration and conceptus number during the luteal phase just prior to implantation (total ovarian progesterone), indicating a conceptus influence on progesterone concentration; 2) a pulse of uterine epithelial mitotic activity at the time of implantation and 3) increased mitotic activity in pregnant animals during unilaminar blastocyst formation compared with non-pregnant animals. Gestation length was reduced by up to 15%, due to the loss of, or reduction in, the four-cell arrest and more rapid definitive blastocyst expansion. This is the first time a conceptus influence on gestation length has been identified in a dasyurid. This study provides further evidence for the modification of the luteal phase by pregnancy in S. macroura.