Search Results

You are looking at 1 - 8 of 8 items for

  • Author: ED Watson x
  • All content x
Clear All Modify Search
Free access

SE Bae, BM Corcoran, and ED Watson

Little is known about neurogenic regulation of uterine contractility in mares. The present study investigated the distribution of adrenergic and peptidergic nerves in the mare uterus. Samples from the uterine horn, body and cervix were collected from 18 cyclic mares for immunohistochemistry. The uterus was well supplied with adrenergic nerves. A large number of tyrosine hydroxylase- and dopamine beta-hydroxylase-immunoreactive nerve bundles and fibres were present in the myometrium and endometrium in all regions of the uterus and cervix. These adrenergic nerve bundles and fibres travelled parallel to the muscle layers and were often associated with blood vessels. The density of peptidergic nerves was less than that of adrenergic nerves, but the pattern of distribution was similar. Neuropeptide Y-immunoreactive nerve fibres were the most abundant, whereas vasoactive intestinal polypeptide- and calcitonin gene-related peptide-immunoreactive nerve fibres were less frequently seen. Substance P-immunoreactive nerve fibres were the most sparse. Peptidergic nerves were distributed among the smooth muscle layers and near endometrial glands and were often associated with blood vessels in all regions of the uterus. The density of peptidergic nerve fibres was similar in the uterine horn and body but was slightly denser in the cervix. These findings indicate that uterine innervation may have an important role in controlling reproductive functions in mares.

Free access

ED Watson, SR Thomson, and AF Howie

A steroidogenic acute regulatory (StAR) protein has been identified in several species as a probable important rate-limiting step in steroidogenesis. This protein is believed to be responsible for transporting cholesterol from the outer to the inner mitochondrial membrane. It is known that equine chorionic gonadotrophin (eCG) stimulates steroidogenesis in the corpora lutea of early pregnant mares and that eCG also upregulates StAR mRNA in bovine ovaries. In the present study, ovarian tissue from cyclic and early pregnant mares was immunostained to detect the distribution of the StAR protein. Western blot analysis was performed, followed by phosphor imaging to establish whether the onset of eCG secretion in pregnancy was associated with increased expression of the StAR protein. Immunostaining for StAR was confined to the theca interna of growing and preovulatory follicles, but 24 h after treatment with hCG, some granulosa cells were positively stained. Positive staining was confined to the large luteal cells of the equine corpus luteum. There was no difference in the distribution of immunostaining before or after onset of eCG secretion in pregnant mares, but increased amounts of StAR were detected in corpora lutea from mares at day 40 or day 41 of pregnancy compared with non-pregnant mares and mares at days 20-30 of pregnancy.

Free access

ED Watson and MO Al-Zi'abi

The mare is a seasonal breeder and undergoes a period of ovarian transition in spring between winter anoestrus and cyclicity. During spring transition LH concentrations are low and many mares have successive large anovulatory follicular waves which reach the size of preovulatory follicles. Follicular angiogenesis is essential for growth and health of preovulatory follicles. The aim of the present study was to investigate the morphology and vascularity of transitional anovulatory follicles. On gross inspection, the wall of transitional follicles was visibly less well vascularized than that of preovulatory follicles. Histologically, it could be seen that the theca was only poorly developed in transitional follicles. Immunostaining for factor VIII showed that there were significantly (P < 0.05) fewer blood vessels in the theca of transitional follicles. There was substantially less (P < 0.001) proliferative activity, measured by immunostaining for Ki67, in the endothelial cells and granulosa cells of transitional follicles compared with preovulatory follicles. Preovulatory follicles had a heavy band of immunostaining in the theca for vascular endothelial growth factor (VEGF), whereas staining was sparse in the transitional follicles. It was concluded that the poor vascularity and development of the theca layer in transitional follicles could be related to low circulating LH, and possibly other trophic hormones, and are likely to be the key factors in explaining the steroidogenic incompetence of transitional anovulatory follicles.

Free access

HG Pedersen, ED Watson, and EE Telfer

Follicular atresia has been examined previously by various biochemical and histological methods. The aim of this study was to compare, for the first time, detection of granulosa cell apoptosis by biochemical DNA analysis and microscopic examination of fresh granulosa cell morphology with the established method of detecting atresia by histology in equine follicles. DNA extracted from granulosa cells was examined by staining with ethidium bromide and end-labelling with [(32)P]dideoxy-ATP, which labels the free 3'-end of DNA fragments. In 25 of 26 follicles (96%) there was agreement between end-labelling and staining of DNA with ethidium bromide (P < 0.001). Granulosa cell apoptosis was distinguished more easily in the end-labelled samples than by staining with ethidium bromide. Histological atresia and apoptosis as detected by biochemical DNA analysis were significantly correlated (P < 0.02) with 20 of 22 follicles (91%) receiving corresponding classifications with the two methods. No follicles with granulosa cell apoptosis as detected by biochemical DNA analysis were histologically viable, but some of the histologically early atretic follicles did not display DNA laddering. Stereomicroscopic evaluation of morphology of the fresh granulosa cells was significantly correlated (P < 0.001) with the histological findings, with 29 of 33 follicles (88%) receiving corresponding classifications. There was a potential error in determining follicle health by biochemical DNA analysis only, as both histologically early and late atretic follicles in some cases did not show DNA laddering. Thus, if relying solely on biochemical detection of apoptosis, severely atretic follicles could wrongly be classified as healthy follicles.

Free access

MO Al-Zi'abi, HM Fraser, and ED Watson

In mares, little information is available on the type of cell death that occurs during natural and induced luteal regression. Corpora lutea were collected from mares in the early luteal phase, days 3-4 (n = 4); mid-luteal phase, day 10 (n = 5); early regression, day 14 (n = 4); late regression, day 17 (n = 4); and 12 and 36 h (n = 3 per group) after PGF2alpha administration on day 10. Histological and ultrastructural sections were examined and TUNEL was used to detect DNA fragmentation. In early luteal regression, there were more pyknotic luteal cells and extracellular round dense bodies compared with the mid-luteal phase. By late regression, there was a significant decline (P < 0.01) in the number of round dense body clusters and a marked accumulation of lipid. Twelve and 36 h after PGF2alpha administration, changes were similar to those seen in natural regression, but there was also a marked infiltration of neutrophils. Accumulation of lipid was not apparent until 36 h after PGF2alpha administration. Ultrastructural examination revealed rarefaction and distortion of the mitochondrial cristae in most of the luteal cells by the mid-luteal phase. Luteal cells showed shrinkage, accumulation of lipid with foamy appearance, and disruption in both smooth endoplasmic reticulum and mitochondria during natural and induced regression. Some luteal cells showed fragmented or pyknotic chromatin characteristic of apoptosis. Other luteal cells showed crenation of the nuclear membrane and shrinkage of the nucleus, features not characteristic of apoptotic cell death. In late regression, capillaries were obstructed by swollen endothelial cells and round dense bodies. These results show that structural regression may be initiated as early as the mid-luteal phase, and is clearly visible by day 14 in natural regression and 12 h after induced regression. Apoptosis did appear to be involved in luteolysis in the equine corpus luteum, but non-apoptotic changes were also observed in some luteal cells during regression. Accumulation of lipid was a late feature of luteal regression.

Free access

MO Al-zi'abi, ED Watson, and HM Fraser

Precise pharmacological control of the corpus luteum is important in the manipulation of the oestrous cycle in mares. Angiogenesis plays a key role in the growth and regression of the corpus luteum; therefore, influencing the vasculature of the corpus luteum may offer a novel method for controlling its lifespan. In the present study, changes in angiogenesis and vascular expression of endothelial growth factor (VEGF) were evaluated throughout the luteal phase and after PGF(2alpha)-induced luteolysis. Corpora lutea were collected from mares in the early luteal phase (days 3-4), mid-luteal phase (day 10), early regression (day 14), late regression (day 17), and at 12 and 36 h after administration of PGF(2alpha) on day 10 of the oestrous cycle. Immunohistochemistry was used to localize Von Willebrand factor and Ki67 in endothelial and proliferating cells, respectively. VEGF mRNA and protein were localized by in situ hybridization and immunohistochemistry. The proliferation index of endothelial cells was intense in the early luteal phase. The early and mid-luteal phases were characterized by a dense network of capillaries. The microvasculature started to regress by day 14. After administration of PGF(2alpha), vasodilation was observed after 12 h, but after 36 h, luteal degeneration was accompanied by a significant decrease in vascularity. VEGF mRNA and protein were expressed mainly in the luteal cells during the early and mid-luteal phases and expression declined at early regression (day 14). However, immunostaining for VEGF protein was high in late luteal regression (day 17) and 36 h after PGF(2alpha) administration. These findings indicate a close temporal association between VEGF expression and angiogenesis in the equine corpus luteum during its functional lifespan.

Free access

SC Riley, AH Gibson, R Leask, DJ Mauchline, HG Pedersen, and ED Watson

Extensive tissue remodelling is required in equine ovaries for follicle growth and development and also migration of the follicle to the ovulatory fossa, where ovulation occurs. The mechanisms for these processes are largely unexplored. Matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs) are important for control of breakdown of extracellular matrix during tissue remodelling. The aims of this study were to determine the pattern and sites of secretion of the gelatinases MMP-2 and -9 and TIMPs into follicular fluid during follicle development in mare ovaries. The predominant gelatinase detected in follicular fluid was MMP-2, which was present in similar amounts throughout follicular development, as demonstrated by zymography. MMP-9 was also present in follicular fluid and secretion increased significantly (P < 0.05) with development of follicles from < 10 mm to 11-20 mm in diameter. Follicular fluid also contained TIMP-1, TIMP-2, unglycosylated and glycosylated TIMP-3, and TIMP-4, as shown by reverse zymography. The abundance of TIMPs remained largely unchanged during follicle development. MMP-2 and -9 were localized by immunohistochemistry to stromal cells and granulosa and theca cells. TIMP-1, -2, -3 and -4 were present in granulosa and theca cells of the follicle and in stromal cells and also associated with extracellular matrix of the ovarian stromal tissue. The MMPs and TIMPs are likely to be involved in the regulation of the breakdown of extracellular matrix during tissue remodelling for follicle development and migration to the ovulation fossa in mares.

Free access

ED Watson, M Heald, A Tsigos, R Leask, M Steele, NP Groome, and SC Riley

Ten mares were studied from February (winter anoestrus) to their second ovulation in the breeding season to investigate the relationship between resumption of ovarian cyclicity in the spring and circulating concentrations of FSH, inhibin A and inhibin isoforms containing pro- and -alphaC immunoreactivity. An additional four mares were studied during one oestrous cycle. Growth and regression of ovarian follicles were monitored by transrectal ultrasonography. The frequency of blood sampling varied from three times a week to once a day, depending on the follicular activity present. Concentrations of FSH, oestradiol, inhibin A and pro- and -alphaC isoforms were low during deep winter anoestrus when minimal follicular activity was present in the ovaries. During spring transition, an increase in FSH concentration preceded the emergence of each follicular wave. Concentrations of inhibins were significantly higher (P < 0.05) during growth of anovulatory follicles in spring transition than during winter anoestrus. Plasma concentrations of oestradiol and inhibin A were significantly higher (P < 0.001, P < 0.05, respectively) during the growth of preovulatory follicles than during the growth of transitional anovulatory follicles, but concentrations of inhibin pro-alphaC isoforms did not differ between the two types of follicle. During the oestrous cycle, there was a significant inverse relationship (P < 0.001) between concentrations of FSH and the inhibins. Plasma inhibin pro-alphaC isoforms, but not inhibin A, reached a peak on the day of ovulation. The results strongly indicate that FSH regulates growth of spring anovulatory and preovulatory follicles. Inhibins are likely to contribute to negative feedback on the release of FSH from the pituitary gland both during the transitional period and the breeding season in mares.