Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Eileen A McLaughlin x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Eileen A McLaughlin and Skye C McIver

Oocytes are sequestered in primordial follicles before birth and remain quiescent in the ovary, often for decades, until recruited into the growing pool throughout the reproductive years. Therefore, activation of follicle growth is a major biological checkpoint that controls female reproductive potential. However, we are only just beginning to elucidate the cellular mechanisms required for either maintenance of the quiescent primordial follicle pool or initiation of follicle growth. Understanding the intracellular signalling systems that control oocyte maintenance and activation has significant implications for improving female reproductive productivity and longevity in mammals, and has application in domestic animal husbandry, feral animal population control and infertility in women.

Free access

Bettina P Mihalas, Patrick S Western, Kate L Loveland, Eileen A McLaughlin, and Janet E Holt

Mammalian oocyte growth and development is driven by a strict program of gene expression that relies on the timely presence of transcriptional regulators via nuclear pores. By targeting specific cargos for nucleo-cytoplasmic transport, karyopherin (KPN) proteins are key to the relocation of essential transcription factors and chromatin-remodelling factors into and out of the nucleus. Using multiple complementary techniques, here we establish that KPNA genes and proteins are dynamically expressed and relocalised throughout mouse oogenesis and folliculogenesis. Of the KPNAs examined (Kpna1, Kpna2, Kpna3, Kpna4, Kpna6, Kpna7, Kpnb1, Ipo5 and Xpo1), all were expressed in the embryonic ovary with up-regulation of protein levels concomitant with meiotic entry for KPNA2, accompanied by the redistribution of the cellular localisation of KPNA2 and XPO1. In contrast, postnatal folliculogenesis revealed significant up-regulation of Kpna1, Kpna2, Kpna4, Kpna6 and Ipo5 and down-regulation of Kpnb1, Kpna7 and Xpo1 at the primordial to primary follicle transition. KPNAs exhibited different localisation patterns in both oocytes and granulosa cells during folliculogenesis, with three KPNAs – KPNA1, KPNA2 and IPO5 – displaying marked enrichment in the nucleus by antral follicle stage. Remarkably, varied subcellular expression profiles were also identified in isolated pre-ovulatory oocytes with KPNAs KPNA2, KPNB1 and IPO5 detected in the cytoplasm and at the nuclear rim and XPO1 in cytoplasmic aggregates. Intriguingly, meiotic spindle staining was also observed for KPNB1 and XPO1 in meiosis II eggs, implying roles for KPNAs outside of nucleo-cytoplasmic transport. Thus, we propose that KPNAs, by targeting specific cargoes, are likely to be key regulators of oocyte development.

Free access

Emmalee A Ford, Emma L Beckett, Shaun D Roman, Eileen A McLaughlin, and Jessie M Sutherland

In women, the non-growing population of follicles that comprise the ovarian reserve is determined at birth and serves as the reservoir for future fertility. This reserve of dormant, primordial follicles and the mechanisms controlling their selective activation which constitute the committing step into folliculogenesis are essential for determining fertility outcomes in women. Much of the available data on the mechanisms responsible for primordial follicle activation focuses on a selection of key molecular pathways, studied primarily in animal models, with findings often not synonymous in humans. The excessive induction of primordial follicle activation may cause the development of premature ovarian insufficiency (POI), a condition characterised by menopause before age 40 years. POI affects 1–2% of all women and is accompanied by additional health risks. Therefore, it is critical to further our understanding of primordial follicle activation in order to diagnose, treat and prevent premature infertility. Research in primordial follicle activation has focused on connecting new molecules to already established key signalling pathways, such as phosphatidylinositol 3-Kinase (PI3K) and mammalian target of rapamycin (mTOR). Additionally, other aspects of the ovarian environment, such as the function of the extracellular matrix, in contributing to primordial follicle activation have gained traction. Clinical applications are examining replication of this extracellular environment through the construction of biological matrices mimicking the 3D ovary, to support follicular growth through to ovulation. This review outlines the importance of the events leading to the establishment of the ovarian reserve and highlights the fundamental factors known to influence primordial follicle activation in humans presenting new horizons for female infertility treatment.

Free access

Lexie Prokopuk, Ellen G Jarred, Rheannon O Blücher, Eileen A McLaughlin, Jessica M Stringer, and Patrick S Western

Polycomb repressive complex 2 (PRC2) catalyses the repressive epigenetic modification of histone 3 lysine 27 tri-methylation (H3K27me3) and functions as a key epigenetic regulator during embryonic development. PRC2 is known to regulate the development of a range of tissues by transcriptional silencing of genes that control cell differentiation, but its roles in female germline and ovarian development remain unknown. Using a mouse model with hypomorphic embryonic ectoderm development (EED) function that reduced H3K27me3 in somatic and germ cells, we found that PRC2 was required for survival, with more than 95% of female animals dying before birth. Although surviving adult EED hypomorphic females appeared morphologically similar to controls and were fertile, Eedhypo/hypo adult ovaries were abnormal, with altered morphology characterised by abnormal follicles. Early Eedhypo/hypo and control fetal ovaries were morphologically similar, and germ cells entered meiosis normally. Immunofluorescent analyses of somatic and germline markers indicated that ovarian development in Eedhypo/hypo ovaries was similar to heterozygous and WT controls. However, TUNEL analyses revealed higher rates of apoptosis in the ovarian surface epithelium, and transcriptional analyses revealed changes in genes regulating epithelial and steroidogenic cell differentiation, possibly foreshadowing the defects observed in adult ovaries of hypomorphic females. While it was possible to analyse early-mid fetal ovarian development, postnatal stages were inaccessible due to the high level of lethality during late fetal stages. Despite this limitation, the data we were able to obtain reveal a novel role for EED in the ovary that is likely to alter ovarian development and ovarian function in adult animals.

Free access

Sridurga Mithra Prabhu, Marvin L Meistrich, Eileen A McLaughlin, Shaun D Roman, Sam Warne, Sirisha Mendis, Catherine Itman, and Kate Lakoski Loveland

Germ cell proliferation, migration and survival during all stages of spermatogenesis are affected by stem cell factor signalling through the c-Kit receptor, the expression and function of which are vital for normal male reproductive function. The present study comprehensively describes the c-Kit mRNA and protein cellular expression profiles in germ cells of the postnatal and adult rodent testis, revealing their significant elevation in synthesis at the onset of spermatogenesis. Real-time PCR analysis for both mice and rats matched the cellular mRNA expression profile where examined. Localization studies in normal mouse testes indicated that both c-Kit mRNA and protein are first detectable in differentiating spermatogonia. In addition, all spermatogonia isolated from 8-day-old mice displayed detectable c-Kit mRNA, but 30–50% of these lacked protein expression. The c-Kit mRNA and protein profile in normal rat testes indicated expression in gonocytes, in addition to differentiating spermatogonia. However, in the irradiated adult rat testes, in which undifferentiated spermatogonia are the only germ cell type, mRNA was also detected in the absence of protein. This persisted at 3 days and 1 and 2 weeks following treatment with gonadotrophin-releasing hormone (GnRH) antagonist to stimulate spermatogenesis recovery. By 4 weeks of GnRH antagonist treatment, accompanying the emergence of differentiating spermatogonia, both mRNA and protein were detected. Based on these observations, we propose that c-Kit mRNA and protein synthesis are regulated separately, possibly by influences linked to testis maturation and circulating hormone levels.