Search Results

You are looking at 1 - 7 of 7 items for

  • Author: F. Gandolfi x
  • Refine by Access: All content x
Clear All Modify Search
Free access

F. Gandolfi and R. M. Moor

Summary. To examine the effects of somatic cell support on the cleavage and viability of fertilized sheep eggs, 434 pronucleate eggs were co-cultured for 3 or 6 days on oviduct cells or fibroblasts and 77 eggs were cultured in medium alone. During the first 3 days in culture 95% of the single-celled eggs cleaved regularly to non-compacted morulae on either of the feeder-layers but only 13% underwent similar regular cleavage in medium alone. Despite the identical cleavage rates in the co-culture groups, only 33% of embryos grown on fibroblasts as compared with 80% of embryos grown on oviduct cells were fully viable as judged by their ability to develop normally after transfer to recipient animals. The viability of embryos in the oviduct group was equal to that obtained after the direct transfer of morulae from donor to recipient sheep.

After 6 days in culture 42% of embryos co-cultured with oviduct cells developed into expanded blastocysts as compared with only 4·5% cultured on fibroblasts. In both co-culture groups virtually all the remaining embryos blocked during the 4th cleavage. When transferred, 30% of blastocysts grown from the pronucleate stage on oviduct cells were viable.

We conclude that: (1) during the first 3 days after fertilization cleavage will progress at a normal rate on different feeder-layers but oviduct cells appear to be required for the acquisition of full embryonic viability; (2) in our system oviduct cells are able to support passage of embryos through the critical 4th cell cycle, whilst fibroblasts are almost entirely unable to support this critical phase; and (3) it is apparent that the factors necessary for the morphological formation of the blastocyst may be insufficient or different from those which endow it with subsequent developmental ability.

Free access

P Pocar, TA Brevini, B Fischer, and F Gandolfi

To date, approximately 60 chemicals have been identified as endocrine disruptors: exogenous agents that interfere with various aspects of natural hormone physiology. The potential reproductive and health hazards of these environmental chemicals have recently generated concern among the scientific community, policy makers and general public. The present review presents and discusses the available evidence that environmental chemicals are causing ovarian toxicity in various species, with particular attention to farm animals. The impact of chronic exposure to endocrine disruptors via food and drinking water cannot be neglected when studying fertility problems in these species. This review focuses attention on the superfamily of organochlorine chemicals, persistent organic pollutants (POPs), because of their persistence in the environment, ability to concentrate up the food chain, continued detection in environmental matrices and ability to be stored in the adipose tissue of animals and humans. Published data clearly indicate that POPs disrupt mammalian oocyte maturation and follicle physiology in every species studied so far, including farm animals. However, as most of the data available still derive from experiments performed on laboratory species or in vitro models, great care should be taken when extrapolations to other species or environmental situations are attempted.

Free access

Y. Fukui, A. M. Glew, F. Gandolfi, and R. M. Moor

Summary. The present experiments were designed to identify possible male-specific effects on early embryonic development in vitro. Sheep oocytes were matured in vitro for 24–26 h and then fertilized in vitro using equal numbers of viable spermatozoa from 1 of 6 Clun Forest rams. At 15–18 h after insemination, oocytes were either fixed and examined for fertilization and polyspermy or further cultured in modified M 199 medium for 3 days in an oviduct epithelial co-culture system. There were significant differences in 5 separate trials between the rams with respect to the rate of fertilization, degree of polyspermy and cleavage rate after monospermic fertilization. The mean rate of fertilization varied from 89% in Ram B to 43% in Ram C while the percentage of polyspermic eggs varied from 5 to 34%. Both the absolute number of embryos cleaving to the 16-cell stage and the calculated percentage of monospermic eggs reaching the 16-cell stage differed markedly between groups of eggs fertilized by different rams. The results indicate that the development of sheep eggs in vitro is differentially affected by the ram from which the spermatozoa are collected.

Keywords: ram effect; in-vitro fertilization; embryo development

Free access

I. M. Crosby, F. Gandolfi, and R. M. Moor

Summary. Sheep embryos, radiolabelled with [35S]methionine, were studied during the first four cell cycles after fertilization to determine the stage at which the regulation of protein synthesis switches from the direction by maternal mRNA to mRNA transcribed by the embryonic genome. Total protein synthesis was consistently high during the first 2 cleavage divisions, dropped by 95% in the 3rd cell cycle, remained low in the 4th and increased again in the 5th cycle. A consistent pattern of proteins was synthesized during the first 3 cell cycles after fertilization followed by major changes in subsequent cycles. The inhibition of transcription by α-amanitin, an inhibitor of polymerase II, did not affect cleavage or protein synthesis during the first 3 cell cycles but blocked cleavage and protein synthesis thereafter. The results indicate that the full activation of transcription in sheep embryos occurs in the 4th cell cycle.

Keywords: embryo; proteins; α-amanitine; transcription; sheep

Free access

D. Rieger, A. M. Luciano, S. Modina, P. Pocar, A. Lauria, and F. Gandolfi

The effects of epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) on the maturation and subsequent development of cattle oocytes in vitro were evaluated in three experiments. Cumulus–oocyte complexes (COC) were collected from cattle ovaries and matured for 20–24 h in control medium or in medium containing 50 ng EGF ml−1, 100 ng IGF-I ml−1, EGF + IGF-I, or 10% (v/v) fetal calf serum plus 0.1 i.u. human menopausal gonadotrophin ml−1 (hMG). In Expt 1, treatment with EGF + IGF-I stimulated cumulus expansion, the metabolism of pyruvate and glutamine, and nuclear maturation. In Expt 2, only the metabolic measurements from oocytes that reached metaphase II were considered, and EGF + IGF-I stimulated pyruvate metabolism to the same extent as serum + hMG. In Expt 3, the oocytes were fertilized after maturation culture, and the resultant embryos cultured for up to 8 days. The cleavage was greater in the EGF and EGF + IGF-I groups than in the controls but less than in the serum + hMG group. Moreover, the number of blastocyst cells at 7 days after insemination and the proportion of cleaved embryos that developed to the blastocyst stage by day 8 was greater in the serum + hMG group than in the control group indicating that maturation treatment can affect early embryonic development. In conclusion, EGF + IGF-I can stimulate cumulus expansion, oxidative metabolism, nuclear maturation and cleavage after fertilization of bovine oocytes in vitro. The relative effects of the treatments on oocyte pyruvate metabolism in Expts 1 and 2 generally paralleled their effects on cleavage and subsequent development in Expt 3, suggesting that mitochondrial function is related to developmental potential. Further investigation is required to determine which component(s) of serum or gonadotrophin treatment is responsible for the effects on subsequent embryonic development.

Free access

A. Camaioni, M. A. Russo, T. Odorisio, F. Gandolfi, V. M. Fazio, and G. Siracusa

Summary. When mouse spermatozoa were briefly exposed in culture to radioactively labelled DNA (pSV2CAT plasmid), radioactivity could be detected by high-resolution autoradiography on the surface and within the nucleus of the spermatozoa. Spermatozoa from other mammalian species (boar, bull, man) could also bind foreign DNA. With the exclusion of human spermatozoa, which in most experiments showed very low labelling values, labelling percentages (evaluated by light microscope autoradiography) ranged between 39 and 78%. In all four species the DNA-binding ability was mainly confined to a specific region of the sperm head (equatorial segment and postacrosomal region), and the sperm–DNA association kinetics were rapid (maximum values were reached within 20–40 min). The data also indicate that factor(s) in seminal plasma might protect spermatozoa from accidental transfection by foreign DNA that may be present in the genital tracts from bacterial or viral sources.

Keywords: spermatozoa; DNA; heparin; transfection; transgenic animals

Free access

Laura F Pisani, Stefania Antonini, Paola Pocar, Stefania Ferrari, Tiziana A L Brevini, Stewart M Rhind, and Fulvio Gandolfi

The present study was designed to investigate the relationship between pre-mating nutrition and the relative amounts of a panel of developmentally relevant genes in ovine oocytes and granulosa cells. Cast age ewes were fed a ration providing 0.5× (0.5 M) or 1.5× (1.5 M) live weight maintenance requirements for 2 weeks before slaughter. The ewes were synchronized and superovulated with FSH and pregnant mares serum gonadotropin. At slaughter, oocytes and granulosa cells were aspirated from follicles >2 mm in diameter and the relative abundance of 8 and 17 transcripts in oocytes and granulosa cells respectively were analyzed by semi-quantitative RT-PCR. In the oocytes, no differences between groups were observed for five transcripts (GDF9, BMP15, c-kit, glucose transporter 1 (SLC2A1), and hexokinase 1), but a lower amount of glucose transporter 3 (SLC2A3), sodium/glucose cotransporter 1 (SLC5A1), and Na+/K+ ATPase mRNAs was detected in the 0.5 M group. Increased expression of PTGS2, HAS2, and the leptin receptor long form was observed in granulosa cells from the 0.5 M group. No differences between groups were observed for the other transcripts (early growth response factor-1, estrogen receptor-α, LH and FSH receptors, gremlin 1, pentraxin 3, KIT ligand, glucose transporters 1, 3, and 8, IGF1, IGF1 receptor, leptin receptor, and tumor necrosis factor-stimulated gene 6). Expression of leptin and sodium/glucose cotransporter 1 was not detected in both groups. The present data indicate that pre-mating nutrition is associated with alteration in the mRNA content in oocytes and surrounding follicle cells in ewes, which may account for the reduced reproductive performance typical of ewes that are fed a restricted ration for a short period of time before mating.