Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Federico Jensen x
Clear All Modify Search
Free access

Federico Jensen, Miguel A Willis, Mirta S Albamonte, María B Espinosa and Alfredo D Vitullo

It has been widely accepted that mammalian females are born with a non-renewing, finite pool of oocytes that will be continuously cleared by atresia, with only a small proportion of them reaching ovulation. Apoptosis regulates this mass germ cell death, especially through the balance between pro- and anti-apoptotic proteins encoded by the BCL-2 gene family. The caviomorph rodent Lagostomus maximus, the South American plains viscacha, displays the highest ovulation rate known for a mammal releasing 400–800 eggs per cycle. We tested the hypothesis that in L. maximus massive polyovulation is a consequence of reduced apoptosis resulting in suppressed follicular atresia. We found that anti-apoptotic BCL-2 gene is markedly expressed in all kind of follicles from primordial to fully mature antral stages in the adult ovary of L. maximus. On the other hand, pro-apoptotic BAX gene showed weak signals or was undetectable by immunohistochemical examination. Western blot against both proteins confirmed immunohistochemical results. Screening for DNA fragmentation by TUNEL assay was conspicuously negative in ovaries from both pregnant and non-pregnant females. In addition, α-oestrogen receptor also showed an enhanced expression from primordial stage to fully mature antral follicles. Our results show that natural preferential expression of BCL-2 and restricted BAX expression greatly suppresses apoptosis in the ovary of L. maximus. This prevents the decline of the oocyte reserve by abolishing follicular atresia and enables the highest ovulation rate known for a mammal, 400–800 or more eggs per cycle.

Free access

Damián O Muzzio, Katharina B Ziegler, Jens Ehrhardt, Marek Zygmunt and Federico Jensen

The success of eutherian mammal evolution was certainly supported by the ability of the already existing immune system to adapt to the presence of the semi-allogeneic fetus without losing the capability to defend the mother against infections. This required the acquisition of highly regulated and coordinated immunological mechanisms. Failures in the development of these strategies not only lead to the interruption of pregnancy but also compromise maternal health. Alongside changes on the cytokine profile – expansion of tolerogenic dendritic and regulatory T cells – a profound adaptation of the B cell compartment during pregnancy was recently described. Among others, the suppression of B cell lymphopoiesis and B cell lymphopenia were proposed to be protective mechanisms tending to reduce the occurrence of autoreactive B cells that might recognize fetal structures and put pregnancy on risk. On the other hand, expansion of the pre-activated marginal zone (MZ) B cell phenotype was described as a compensatory strategy launched to overcome B cell lymphopenia thus ensuring a proper defense. In this work, using an animal model of pregnancy disturbances, we demonstrated that the suppression of B cell lymphopoiesis as well as splenic B cell lymphopenia occur independently of pregnancy outcome. However, only animals undergoing normal pregnancies, but not those suffering from pregnancy disturbances, could induce an expansion and activation of the MZ B cells. Hence, our results clearly show that MZ B cells, probably due to the production of natural protective antibodies, participate in the fine balance of immune activation required for pregnancy well-being.

Restricted access

Julieta Aylen Schander, Julieta Aisemberg, Fernando Correa, Manuel Luis Wolfson, Lorena Juriol, Cora Cymeryng, Federico Jensen and Ana María Franchi

Maternal lifestyle affects both mother health and pregnancy outcome in humans. Several studies have demonstrated that interventions oriented toward reducing stress and anxiety have positive effects on pregnancy complications such as preeclampsia, excessive gestational weight, gestational diabetes and preterm birth. In this work, we showed that the environmental enrichment (EE), defined as a noninvasive and biologically significant stimulus of the sensory pathway combined with voluntary physical activity, prevented preterm birth (PTB) rate by 40% in an inflammatory mouse model induced by the systemic administration of bacterial lipopolysaccharide (LPS). Furthermore, we found that EE modulates maternal metabolism and produces an anti-inflammatory environment that contributes to pregnancy maintenance. In pregnant mice uterus, EE reduces the expression of TLR4 and CD14 (the LPS receptor and its coactivator protein), preventing the LPS-induced increase in PGE2 and PGF2α release and nitric oxide synthase (NOS) activity. In cervical tissue, EE inhibits cervical ripening events, such as PGE2 release, matrix metalloproteinase (MMP)-9 increased activity and neutrophil recruitment, therefore conserving cervical function. It seems that EE exposure could mimic the stress and anxiety-reducing techniques mentioned above, explaining, at least partially, the beneficial effects of having a healthy lifestyle before and during gestation. Furthermore, we propose that designing an EE protocol for humans could be a noninvasive and preventive therapy for pregnancy complications, averting pre-term birth occurrence and dreaded sequelae that are present in the offspring born too soon.

Restricted access

Imke Bommer, Lorena Juriol, Damián Muzzio, Natalin Valeff, Jens Ehrhardt, Franziska Matzner, Katharina Ziegler, Kristin Malinowsky, María Silvia Ventimiglia, Marek Zygmunt and Federico Jensen

The amniotic fluid provides mechanical protection and immune defense against pathogens to the fetus. Indeed, components of the innate and adaptive immunity, including B cells, have been described in the amniotic fluid. However, limited information concerning phenotype and functionality of amniotic fluid B cells is available. Hence, we aimed to perform a full phenotypical and functional characterization of amniotic fluid B cells in normal pregnancy and in a mouse model of preterm birth. Phenotypic analysis depicted the presence of two populations of amniotic fluid B cells: an immature population, resembling B1 progenitor cells and a more mature population. Further isolation and in vitro co-culture with a bone marrow stroma cell line demonstrated the capacity of the immature B cells to mature. This was further supported by spontaneous production of IgM, a feature of the B1 B cell sub-population. An additional in vitro stimulation with lipopolysaccharide induced the activation of amniotic fluid B cells as well as the production of pro and anti-inflammatory cytokines. Furthermore, amniotic fluid B cells were expanded in the acute phase of LPS-induced preterm birth. Overall our data add new insight not only on the phenotype and developmental stage of the amniotic fluid B1 B cells but especially on their functionality. This provides important information for a better understanding of their role within the amniotic fluid as immunological protective barrier, especially with regard to intraamniotic infection and preterm birth.