Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Fei Sun x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Zechen Yan, Dandan Fan, Qingjun Meng, Jinjian Yang, Wei Zhao, Fei Guo, Dongjian Song, Ruiming Guo, Ke Sun, and Jiaxiang Wang

The production of haploid gametes by meiosis is a cornerstone of sexual reproduction and maintenance of genome integrity. Zfp38 mRNA is expressed in spermatocytes, indicating that transcription factor ZFP38 has the potential to regulate transcription during meiosis. In this study, we generated Zfp38 conditional knockout mice (Zfp38 flox/flox, Stra8-Cre, hereafter called Zfp38 cKO) and found that spermatogenesis did not progress beyond meiosis prophase I in Zfp38 cKO mice. Using a chromosomal spread technique, we observed that Zfp38 cKO spermatocytes exhibited a failure in chromosomal synapsis observed by SYCP1/SYCP3 double staining. Progression of DNA double-strand breaks (DSB) repair is disrupted in Zfp38 cKO spermatocytes, as revealed by γ-H2AX, RAD51 and MLH1 staining. Furthermore, the mRNA and protein levels of DSB repair enzymes and factors that guide their loading onto sites of DSBs, such as RAD51, DMC1, RAD51, TEX15 and PALB2, were significantly reduced in Zfp38 cKO spermatocytes. Taken together, our data suggest that ZFP38 is critical for the chromosomal synapsis and DSB repairs partially via its regulation of DSB repair-associated protein expression during meiotic progression in mouse.

Free access

Huijuan Zhang, Guishuan Wang, Lin Liu, Xiaolin Liang, Yu Lin, Yi-Yu Lin, Chu-Fang Chou, Mo-Fang Liu, Hefeng Huang, and Fei Sun

The chromatoid body (CB) is a specific cloud-like structure in the cytoplasm of haploid spermatids. Recent findings indicate that CB is identified as a male germ cell-specific RNA storage and processing center, but its function has remained elusive for decades. In somatic cells, KH-type splicing regulatory protein (KSRP) is involved in regulating gene expression and maturation of select microRNAs (miRNAs). However, the function of KSRP in spermatogenesis remains unclear. In this study, we showed that KSRP partly localizes in CB, as a component of CB. KSRP interacts with proteins (mouse VASA homolog (MVH), polyadenylate-binding protein 1 (PABP1) and polyadenylate-binding protein 2 (PABP2)), mRNAs (Tnp2 and Odf1) and microRNAs (microRNA-182) in mouse CB. Moreover, KSRP may regulate the integrity of CB via DDX5-miRNA-182 pathway. In addition, we found abnormal expressions of CB component in testes of Ksrp-knockout mice and of patients with hypospermatogenesis. Thus, our results provide mechanistic insight into the role of KSRP in spermatogenesis.

Free access

Mian Liu, Xia Chen, Qing-Xian Chang, Rui Hua, Yan-Xing Wei, Li-Ping Huang, Yi-xin Liao, Xiao-Jing Yue, Hao-Yue Hu, Fei Sun, Si-Jia Jiang, Song Quan, and Yan-Hong Yu

Small extracellular vesicles (sEVs) are important mediators of cell-to-cell communication involved in the successful establishment of a pregnancy. Human decidual stromal cells play a key role in regulating trophoblast invasion. Nevertheless, the regulatory functions of decidual stromal cells-derived sEVs in human trophoblast cells are still unclear. In this study, primary human decidual stromal cells were isolated, and immortalized human endometrial stromal cell line (HESCs) were decidualized into human decidual stromal cells (HDSCs) using hormonal cocktail containing medroxy progesterone 17-acetate (MPA), estrogen and cAMP analog. HDSC-sEVs were isolated from both primary human decidual stromal cells and immortal HDSCs, respectively, and identified by transmission electron microscopy and western blotting. EV uptake assay indicated that HDSC-sEVs could be uptaken by trophoblast cells. HDSC-sEVs could increase the invasiveness and the expression level of N-cadherin of trophoblast cells with elevated phosphorylation of SMAD2 and SMAD3 in the cells. Silencing of N-cadherin could block cell invasion induced by HDSC-sEVs, while knockdown of SMAD2 and SMAD3 could inhibit the upregulation of N-cadherin in trophoblast cells. Taken together, our results suggested a regulatory effect of HDSC-sEVs in the invasion of trophoblast cells, and HDSC-sEVs may be important mediators of trophoblasts during embryo implantation and placentation.

Restricted access

Qiuling Jie, Lijun Chen, Jiangying Liang, Xiaohui Yang, Fei Sun, and Yanlin Ma

In brief

Preeclampsia is a pregnancy complication that can lead to severe adverse maternal and fetal outcomes, but the mechanisms underlying the development of preeclampsia are not fully understood. This study shows that ETV4 plays an essential role in the proliferation, invasion, and migration of trophoblast cells by regulating MMP-2 and MMP-9 and is involved in the pathogenesis of preeclampsia.


Preeclampsia (PE) is a pregnancy complication that can lead to severe adverse maternal and fetal outcomes. However, the mechanisms underlying the development of PE are not fully understood. ETS Variant Transcription Factor 4 (ETV4) plays an important role in cell proliferation, migration, and invasion. In this study, we aimed to explore the potential function of ETV4 in placental trophoblast cells. We analyzed the expression and location of ETV4 in PE and uncomplicated placental tissues using RT-qPCR, Western blotting, immunohistochemistry, and immunofluorescence staining. The results showed that both the mRNA and protein levels of ETV4 were markedly decreased in PE placental tissues compared with placental tissues from women with uncomplicated pregnancies (P < 0.05). Then, the effects of ETV4 on HTR-8/SVneo and Bewo cell proliferation, migration, and invasion were evaluated by MTT, 5-ethynyl-2-deoxyuridine (EdU), wound healing, and Transwell assays, respectively. The results showed that ETV4 knockdown inhibited both HTR-8/SVneo and Bewo cell proliferation, migration, and invasion (P < 0.05). Conversely, overexpression of ETV4 promoted both HTR-8/SVneo and Bewo cell proliferation, migration, and invasion (P < 0.05). We then measured the expression of MMP-2 and MMP-9 in HTR8/SVneo cells. We found that ETV4 knockdown decreased the mRNA and protein expression of MMP-2 and MMP-9, while ETV4 overexpression increased MMP-2 and MMP-9 mRNA and protein expression (P < 0.05). In conclusion, ETV4 plays an essential role in the proliferation, invasion, and migration of trophoblast cells by regulating MMP-2 and MMP-9. Our findings provide novel insight into the mechanisms underlying the occurrence of PE.