In cattle, the concentration of sex steroids modulates uterine function, which is reflected in the composition of the luminal metabolome. Ultimately, the uterine luminal metabolome influences embryonic growth and development. Our objectives were (1) to compare the luminal metabolome 4, 7, and 14 days after estrus of cows that were exposed to greater (HP4; n = 16) vs. lower (LP4; n = 24) concentrations of progesterone before displaying estrus and ovulating spontaneously and (2) to identify changes in the luminal concentration of metabolites across these time points. Luminal epithelial cells and fluid were collected using a cytology brush and gene expression and metabolite concentrations were assessed by RNAseq and targeted mass spectrometry, respectively. Metabolome profile was similar between treatments within each of days 4, 7, and 14 (FDR ≥ 0.1). Concentrations of 53 metabolites changed, independent of treatment, across the diestrus. Metabolites were mostly lipids (40 out 53) and the greatest concentrations were at d 14 (FDR ≤ 0.1). On d 7, the concentration of putrescine and the gene expression of ODC1, PAOX, SLC3A2, and SAT1 increased (P ≤ 0.05). On d 14, the concentration of three ceramides, four glucosylceramides, and 12 sphingomyelins and the expression of SGMS2 were increased, in addition to the concentration of choline and 20 phosphatidylcholines. Collectively, the post-estrus concentration of luminal metabolites changed dynamically, independent of the concentration of sex steroids on the previous cycle, and the greatest magnitude changes were on day 14, when lipid metabolism was the most enriched pathway.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: Felipe A. C. C. Silva x
- Refine by Access: All content x
Felipe A. C. C. Silva, Thiago Martins, Mariana Sponchiado, Cecilia C. Rocha, Nadia Ashrafi, Stewart F. Graham, Ky Pohler, Francisco Peñagaricano, Angela Gonella-Diaza, and Mario Binelli
Maite del Collado, Juliano C da Silveira, Marcelo L F Oliveira, Bárbara M S M Alves, Rosineide C Simas, Adriana T Godoy, Mirela B Coelho, Lygia A Marques, Mateus M Carriero, Marcelo F G Nogueira, Marcos N Eberlin, Luciano A Silva, Flávio V Meirelles, and Felipe Perecin
The influence of in vitro maturation (IVM) in oocytes is still not totally understood. The aim of this study was to determine the influence of IVM on the metabolism and homeostasis of bovine cumulus-oocyte complexes. In the present study, we demonstrated that IVM leads to accumulation of neutral lipids associated with differential levels of the mono-, di- and triacylglycerols in both cumulus cells and oocytes. We observed that in vitro-matured oocytes exhibited decreased glutathione and reactive oxygen species levels and a lower ATP/ADP ratio when compared to in vivo-matured oocytes, with no significant differences in metabolism and stress-related mRNA or miRNA levels. Moreover, in addition to an increase in lipids in in vitro-matured cumulus cells, fatty acid synthesis and accumulation as well as glycolysis pathway genes were upregulated, whereas those affiliated with the β-oxidation pathway were decreased. Our gene expression data in cumulus cells suggest the disruption of endoplasmic reticulum stress, apoptosis and cellular stress response pathways during IVM. Furthermore, a total of 19 miRNAs were significantly altered by the maturation process in cumulus cells. These results indicate some new negative influences of the in vitro system in cumulus-oocyte complexes, demonstrating the occurrence of functional disruption in lipid metabolism and stress pathways and showing evidences suggesting the occurrence of altered mitochondrial activity and energy metabolism during IVM, with a massive dysregulation of the corresponding transcripts in the surrounding cumulus cells.