Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Gen L Takei x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Gen L Takei and Masakatsu Fujinoki


Mammalian sperm motility has to be hyperactivated to be fertilization-competent. Hyperactivation is regulated by extracellular environment. Osmolality of mammalian semen is higher than that in female reproductive tract; however, the effect of them on hyperactivation has not been investigated. So we investigated the effect of osmotic environment on hyperactivation using hamster spermatozoa at first. Increase in the osmolality of the media (∼370 mOsm) by increasing the concentration of NaCl (∼150 mmol/L) caused the delay of the expression of hyperactivation. When NaCl concentration varied in the same range (75–150 mmol/L) whereas the osmolality was fixed at 370 mOsm by adding mannitol, the delay of hyperactivation occurred dependent on NaCl concentration. Increase in NaCl concentration also caused suppression of curvilinear velocity, bend angle, and sliding velocity of the flagellum at the onset of incubation, suggesting that NaCl concentration affect both activation and hyperactivation in hamster spermatozoa. Hamster sperm intracellular Ca2+ concentration decreased as extracellular NaCl concentration increased, whereas membrane potential and intracellular pH were unaffected by extracellular NaCl concentration. SN-6 and SEA0400, inhibitors of Na+-Ca2+ exchanger (NCX), increased intracellular Ca2+ and accelerated hyperactivation in the presence of 150 mmol/L NaCl. Tyrosine phosphorylation on fibrous sheath proteins was unaffected by extracellular NaCl concentration. These results suggest that extracellular Na+ suppresses hamster sperm hyperactivation by reducing intracellular Ca2+ via an action of NCX in a tyrosine phosphorylation-independent manner. It seems that the removal of suppression by extracellular Na+ leads to the expression of hyperactivated motility.