Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Georg J Arnold x
Clear All Modify Search
Free access

Constantine A Simintiras, Thomas Fröhlich, Thozhukat Sathyapalan, Georg J Arnold, Susanne E Ulbrich, Henry J Leese and Roger G Sturmey

Oviduct fluid is the microenvironment that supports early reproductive processes including fertilisation, embryo cleavage and genome activation. However, the composition and regulation of this critical environment remain rather poorly defined. This study uses an in vitro preparation of the bovine oviduct epithelium to investigate the formation and composition of in vitro-derived oviduct fluid (ivDOF) within a controlled environment. We confirm the presence of oviduct-specific glycoprotein 1 in ivDOF and show that the amino acid and carbohydrate content resembles that of previously reported in vivo data. In parallel, using a different culture system, a panel of oviduct epithelial solute carrier genes and the corresponding flux of amino acids within ivDOF in response to steroid hormones were investigated. We next incorporated fibroblasts directly beneath the epithelium. This dual culture arrangement represents more faithfully the in vivo environment and impacts on ivDOF composition. Lastly, physiological and pathophysiological endocrine states were modelled and their impact on the in vitro oviduct preparation was evaluated. These experiments help clarify the dynamic function of the oviduct in vitro and suggest a number of future research avenues, such as investigating epithelial–fibroblast interactions, probing the molecular aetiologies of subfertility and optimising embryo culture media.

Restricted access

Nina Schmid, Annika Missel, Stoyan Petkov, Jan B Stöckl, Florian Flenkenthaler, Georg J Arnold, Thomas Fröhlich, Rüdiger Behr and Artur Mayerhofer

Testicular peritubular cells (TPCs) are smooth muscle-like cells, which form a compartment surrounding the seminiferous tubules. Previous studies employing isolated human testicular peritubular cells (HTPCs) indicated that their roles in the testis go beyond sperm transport and include paracrine and immunological contributions. Peritubular cells from a non-human primate (MKTPCs), the common marmoset monkey, Callithrix jacchus, share a high degree of homology with HTPCs. However, like their human counterparts these cells age in vitro and replicative senescence limits in-depth functional or mechanistic studies. Therefore, a stable cellular model was established. MKTPCs of a young adult animal were immortalized by piggyBac transposition of human telomerase (hTERT), that is, without the expression of viral oncogenes. Immortalized MKTPCs (iMKTPCs) grew without discernable changes for more than 50 passages. An initial characterization revealed typical genes expressed by peritubular cells (androgen receptor (AR), smooth-muscle actin (ACTA2), calponin (CNN1)). A proteome analysis of the primary MKTPCs and the derived immortalized cell line confirmed that the cells almost completely retained their phenotype. To test whether they respond in a similar way as HTPCs, iMKTPCs were challenged with forskolin (FSK) and ATP. As HTPCs, they showed increased expression level of the StAR protein (StAR) after FSK stimulation, indicating steroidogenic capacity. ATP increased the expression of pro-inflammatory factors (e.g. IL1B; CCL7), as it is the case in HTPCs. Finally, we confirmed that iMKTPCs can efficiently be transfected. Therefore, they represent a highly relevant translational model, which allows mechanistic studies for further exploration of the roles of testicular peritubular cells.