Search Results
You are looking at 1 - 3 of 3 items for
- Author: Gernot Desoye x
- Refine by Access: All content x
Search for other papers by Carolin Besenboeck in
Google Scholar
PubMed
Search for other papers by Silvija Cvitic in
Google Scholar
PubMed
Search for other papers by Uwe Lang in
Google Scholar
PubMed
Search for other papers by Gernot Desoye in
Google Scholar
PubMed
Search for other papers by Christian Wadsack in
Google Scholar
PubMed
Abstract
The phospholipase A2 (PLA2) family is a very diverse group of enzymes, all serving in the cleavage of phospholipids, thereby releasing high amounts of arachidonic acid (AA) and lysophospholipids. AA serves as a substrate for prostaglandin production, which is of special importance in pregnancy for the onset of parturition. Novel research demonstrates that PLA2 action affects the immune response of the mother toward the child and is therefore probably implied in the tolerance of the fetus and prevention of miscarriage. This review presents data on the biochemical and enzymatic properties of PLA2 during gestation with a special emphasis on its role for the placental function and development of the fetus. We also critically discuss the possible pathophysiological significance of PLA2 alterations and its possible functional consequences. These alterations are often associated with pregnancy pathologies such as preeclampsia and villitis or pregnancy complications such as obesity and diabetes in the mother as well as preterm onset of labor.
Search for other papers by Mark S Longtine in
Google Scholar
PubMed
Search for other papers by Silvija Cvitic in
Google Scholar
PubMed
Search for other papers by Bryanne N Colvin in
Google Scholar
PubMed
Search for other papers by Baosheng Chen in
Google Scholar
PubMed
Search for other papers by Gernot Desoye in
Google Scholar
PubMed
Search for other papers by D Michael Nelson in
Google Scholar
PubMed
We assessed the response of primary cultures of placental villous mononucleated trophoblasts and multinucleated syncytiotrophoblast to calcitriol, the most biologically active form of vitamin D. Whole-genome microarray data showed that calcitriol modulates the expression of many genes in trophoblasts within 6 hours of exposure and RT-qPCR revealed similar responses in cytotrophoblasts, syncytiotrophoblasts and villous explants. Both cytotrophoblasts and syncytiotrophoblasts expressed genes for the vitamin D receptor, for LRP2 and CUBN that mediate internalization of calcidiol, for CYP27B1 that encodes the enzyme that converts calcidiol into active calcitriol, and for CYP24A1 that encodes the enzyme that modifies calcitriol and calcidiol to inactive calcitetrol. Notably, we found an inverse effect of calcitriol on expression of CD14 and CD180/RP105, proteins that differentially regulate toll-like receptor 4-mediated immune responses. Supported by gene ontology analysis, we tested the hypothesis that CD14 and CD180 modulate the inflammatory response of syncytiotrophoblast to bacterial lipopolysaccharide (LPS). These cells showed a robust response to a wide range of LPS concentrations, with induction of active NF-κB and increased secretion of IL-6 and IL-8. SiRNA-mediated knockdown of CD14 reduced the secretion of IL-6 and IL-8 in response to LPS. Collectively, our data showed that calcitriol has a rapid and widespread effect on villous trophoblast gene expression in general, and a specific effect on the innate immune response by syncytiotrophoblast.
Search for other papers by Veronika Tandl in
Google Scholar
PubMed
Search for other papers by Denise Hoch in
Google Scholar
PubMed
Search for other papers by Julia Bandres-Meriz in
Google Scholar
PubMed
Search for other papers by Sanela Nikodijevic in
Google Scholar
PubMed
Search for other papers by Gernot Desoye in
Google Scholar
PubMed
Search for other papers by Alejandro Majali-Martinez in
Google Scholar
PubMed
Endoplasmic reticulum (ER)-stress activates the unfolded protein response (UPR), which plays a (patho)physiological role in the placenta. Oxygen and hyperinsulinemia are major regulators of placental development. Thus, we hypothesized that oxygen, insulin and their interplay modulate ER-stress in early pregnancy. Using the human first-trimester trophoblast cell line ACH-3P, we quantified mRNA and protein of several members of UPR by RT-qPCR and Western blotting, respectively. ER-stress induction using tunicamycin and brefeldin A resulted in increased CHOP (4.6-fold change; P ≤ 0.001), XBP1 expression (1.7- and 1.3-fold change, respectively; P ≤ 0.001 and P < 0.05) and XBP1 splicing (7.9- and 12.8-fold change, respectively; P ≤ 0.001). We subsequently analyzed the effect of oxygen (6.5%, 2.5%), insulin (0.1–10 nM) and their interaction using ANCOVA adjusted for cell passage as co-variate. Although GRP78 protein remained unaffected, low oxygen (2.5% O2) increased IRE1α phosphorylation (+52%; P < 0.05) and XBP1 splicing (1.8-fold change; P ≤ 0.001) after 24 h, while eIF2α protein and CHOP expression were downregulated (−28%; P < 0.05 and −24%; P ≤ 0.001; respectively). eIF2α phosphorylation was also reduced after 48 h by low oxygen (−61%; P < 0.05) but increased in the presence of insulin (+46%; P ≤ 0.01). These changes were not PERK-mediated, since PERK phosphorylation and total protein were not altered. Overall, our results suggest that IRE1α and eIF2α UPR-pathways are differentially regulated by oxygen and insulin in early pregnancy.