Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Hanne Frederiksen x
Clear All Modify Search
Free access

Tue Søeborg, Hanne Frederiksen and Anna-Maria Andersson

Human exposure to chemicals may be estimated by back-calculating urinary concentrations resulting from biomonitoring studies if knowledge of the chemical's toxicokinetic properties is available. In this paper, available toxicokinetic data for back-calculating urinary concentrations into daily intake values for bisphenol A (BPA), phthalates, parabens, and triclosan (TCS) are reviewed and knowledge gaps are identified. Human data is evaluated and presented with relevant animal data. Focus is on the recovery of the administered dose, the route of administration, and differences between humans and animals. Two human toxicokinetic studies are currently used to conclude that an oral dose of BPA is recoverable in urine and that no free BPA is present in plasma in spite of several contradicting biominotoring studies. Urinary recovery of an oral dose of phthalates in humans is complicated to assess due to extensive metabolism. In animals using 14C-marked phthalates, near-complete recovery is observed. An oral dose of 14C-marked parabens is also almost completely recovered in animals. In both humans and animals, however, two unspecific metabolites are formed, which complicates the back-calculation of parabens in humans. The recovery of both oral and dermal TCS in humans has been studied, but due to background levels of TCS, the back-calculation is difficult to perform. In conclusion, due to limited data, reasonable estimates of daily intake values based on urinary data are often not possible to obtain. Several knowledge gaps are identified and new studies are suggested. The route of administration used in toxicokinetic studies often does not match realistic scenarios.

Free access

Anna-Maria Andersson, Hanne Frederiksen, Kenneth M Grigor, Jorma Toppari and Niels E Skakkebæk

Free access

Katrine Tefre de Renzy-Martin, Hanne Frederiksen, Jeppe Schultz Christensen, Henriette Boye Kyhl, Anna-Maria Andersson, Steffen Husby, Torben Barington, Katharina M Main and Tina Kold Jensen

Many phthalates, parabens and phenols are suspected to have endocrine-disrupting properties in humans. They are found in consumer products, including food wrapping, cosmetics and building materials. The foetus is particularly vulnerable and exposure to these chemicals therefore is of concern for pregnant women. We investigated current exposure to several commonly used phthalates, parabens and phenols in healthy, pregnant Danish women. A total of 200 spot urine samples were collected between 8 and 30 weeks of gestation and analysed for metabolites of ten phenols, seven parabens and 16 phthalate by liquid chromatography–tandem mass spectrometry representing 26 non-persistent compounds. The majority of analytes were present in the urine sample collected from most women who participated. Thus, in 174 of the 200 women, metabolites of more than 13 (>50%) of 26 compounds were detected simultaneously. The number of compounds detected per woman (either as the parent compound or its metabolite(s)) ranged from 7 to 21 with a median of 16. The majority of compounds correlated positively with each other within and between chemical groups, suggesting combined exposure sources. Estimated daily intakes (DIs) of phthalates and bisphenol A (BPA) were below their individual tolerable DI (TDI) and with hazard quotients below 1. In conclusion, we found detectable levels of phthalate metabolites, parabens and phenols in almost all pregnant women, suggesting combined multiple exposures. Although the estimated DI of phthalates and BPA for an individual was below TDI, our results still raise concern, as current toxicological risk assessments in humans do not take into account simultaneous exposure. The true cumulative risk for the foetus may therefore be underestimated.

Free access

Hanne Frederiksen, Tina Kold Jensen, Niels Jørgensen, Henriette Boye Kyhl, Steffen Husby, Niels E Skakkebæk, Katharina M Main, Anders Juul and Anna-Maria Andersson

Several non-persistent industrial chemicals have shown endocrine disrupting effects in animal studies and are suspected to be involved in human reproductive disorders. Among the non-persistent chemicals that have been discussed intensively during the past years are phthalates, bisphenol A (BPA), triclosan (TCS), and parabens because of their anti-androgenic and/or estrogenic effects. Phthalates are plasticizers used in numerous industrial products. Bisphenol A is the main component of polycarbonate plastics and epoxy resins. Parabens and TCS are antimicrobial preservatives and other phenols such as benzophenone-3 (BP-3) act as a UV-screener, while chlorophenols and phenyl phenols are used as pesticides and fungicides in agriculture. In spite of the widespread use of industrial chemicals, knowledge of exposure sources and human biomonitoring studies among different segments of the population is very limited. In Denmark, we have no survey programs for non-persistent environmental chemicals, unlike some countries such as the USA (NHANES) and Germany (GerES). However, we have analyzed the excretion of seven parabens, nine phenols, and the metabolites of eight different phthalates in urine samples collected over the past 6 years from four Danish cohorts. Here, we present biomonitoring data on more than 3600 Danish children, adolescents, young men, and pregnant women from the general population. Our study shows that nearly all Danes were exposed to the six most common phthalates, to BPA, TCS, and BP-3, and to at least two of the parabens. The exposure to other non-persistent chemicals was also widespread. Our data indicate decreasing excretion of two common phthalates (di-n-butyl phthalate and di-(2-ethylhexyl) phthalate) over time.

Free access

Roger Hart, Dorota A Doherty, Hanne Frederiksen, Jeffrey A Keelan, Martha Hickey, Deborah Sloboda, Craig E Pennell, John P Newnham, Niels E Skakkebaek and Katharina M Main

We hypothesised that antenatal exposure to ubiquitous phthalates may lead to an earlier menarche and a lower prevalence of polycystic ovarian syndrome (PCOS) and polycystic ovarian morphology (PCO) in adolescence. The Western Australian Pregnancy Cohort (Raine) Study recruited 3000 women at 18 weeks of gestation in 1989–1991, 1377 had antenatal serum stored without thawing at −80 °C. An unselected subset was evaluated in the early follicular phase for PCO and PCOS by ultrasound and serum evaluation in adolescence. Serum was analysed for anti-Müllerian hormone (AMH), inhibin B, sex hormone binding globulin (SHBG), testosterone, androstenedione and DHEAS. Four hundred microlitres of the frozen maternal serum underwent isotope-diluted liquid chromatography–tandem mass spectrometry, with preceding enzymatic deconjugation followed by solid-phase extraction to determine phthalate exposure. Two hundred and forty four girls attended assessment and most common phthalate metabolites were detectable in the majority of the 123 samples available. Several phthalates were negatively associated with maternal SHBG, and associations with maternal androgens were less consistent. The sum of the metabolites of di-(2-ethylhexyl) phthalate was associated with a non-significant tendency towards an earlier age at menarche (P=0.069). Uterine volume was positively associated with mono-(carboxy-iso-octyl) phthalate (P=0.018). Exposure to monoethyl phthalate (MEP) and the sum of all phthalate metabolites (Σall phth.m) were protective against PCOS in adolescence (P=0.001 and P=0.005 respectively). There were negative associations of MEP with PCO (P=0.022) and of MEP with serum AMH (P=0.031). Consequently, our data suggest that antenatal exposure to environmental phthalates may be associated with oestrogenic and/or anti-androgenic reproductive effects in adolescent girls.