Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Hoi Chang Lee x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Neha Gupta, Hiroki Akizawa, Hoi Chang Lee, and Rafael A Fissore

The discovery of PLCZ1 nearly 20 years ago as the primary Ca2+ oscillation-inducing factor in the sperm of mammals represented a significant breakthrough in our quest to elucidate the molecules and pathways that promote egg activation during fertilization. The advent of the intracytoplasmic sperm injection (ICSI) technique, which made fertilization possible without sperm capacitation, acrosome reaction, and gamete fusion, strengthened the research that led to the discovery of PLCZ1 and became an essential clinical tool for humans. The use of ICSI combined with the detection of PLCZ1 expression and mutations in infertile patients established the fundamental role of PLCZ1 in human fertility while leading to the discovery of novel components of the perinuclear theca, the site of the residence of PLCZ1 in sperm before fertilization. Remarkably, the more extensive use of ICSI in species other than humans and mice revealed poor success and exposed gaps in our understanding of PLCZ1 release and/or activation. Similarly, fertilization using sperm from mouse models lacking Plcz1 has produced striking results whose true implications are yet to be determined. Nevertheless, answers to these unresolved questions will produce a complete picture of the adaptations and molecular players that mammalian species employ to ensure the success of the triggering event of embryo development that has linked generations since the beginning of times.

Free access

Luis Águila, Ricardo Felmer, María Elena Arias, Felipe Navarrete, David Martin-Hidalgo, Hoi Chang Lee, Pablo Visconti, and Rafael Fissore

The efficiency of intracytoplasmic sperm injection (ICSI) in the bovine is low compared to other species. It is unknown whether defective oocyte activation and/or sperm head decondensation limit the success of this technique in this species. To elucidate where the main obstacle lies, we used homologous and heterologous ICSI and parthenogenetic activation procedures. We also evaluated whether in vitro maturation negatively impacted the early stages of activation after ICSI. Here we showed that injected bovine sperm are resistant to nuclear decondensation by bovine oocytes and this is only partly overcome by exogenous activation. Remarkably, when we used heterologous ICSI, in vivo-matured mouse eggs were capable of mounting calcium oscillations and displaying normal PN formation following injection of bovine sperm, although in vitro-matured mouse oocytes were unable to do so. Together, our data demonstrate that bovine sperm are especially resistant to nuclear decondensation by in vitro-matured oocytes and this deficiency cannot be simply overcome by exogenous activation protocols, even by inducing physiological calcium oscillations. Therefore, the inability of a suboptimal ooplasmic environment to induce sperm head decondensation limits the success of ICSI in the bovine. Studies aimed to improve the cytoplasmic milieu of in vitro-matured oocytes and to replicate the molecular changes associated with in vivo capacitation and acrosome reaction will deepen our understanding of the mechanism of fertilization and improve the success of ICSI in this species.