Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Hongmei Wang x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Hongmei Wang and Benjamin K Tsang

Nodal, a member of the transforming growth factor β family, was first cloned from a 7.5 day post-coitum mouse embryo cDNA library. Nodal exerts its biological effects by signalling through its types I and II serine/threonine kinase receptor complex and intracellular Smad proteins. The type II receptors for Nodal are Activin type II receptors ActRIIA and ActRIIB, whereas the putative type I receptors are Activin receptor like kinase (ALK) 4 and ALK7. The main Smad proteins involved in Nodal signalling are Smad2 and Smad3. Studies of Nodal in adult tissues indicate that it is pro-apoptotic in rat ovarian granulosa cells, human trophoblast cells and human ovarian epithelial cancer cells and is growth inhibitory in the latter two cell types. This review summarises the progress made on the functions of Nodal in the apoptosis of adult tissues, especially in the ovary and placenta.

Free access

Xiaokui Yang, Ying Zhou, Sha Peng, Liang Wu, Hai-Yan Lin, Shuyu Wang, and Hongmei Wang

Recent studies implicate the regulatory function of microRNAs (miRNAs) in oocyte maturation and ovarian follicular development. Differentially expressed miRNAs are found in the plasma of premature ovarian failure (POF) patients and normal cycling women. In this study, miRNA-regulated signaling pathways and related genes were described using Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The effect of mir-23a on granulosa cell apoptosis was also studied by examining the protein expression of X-linked inhibitor of apoptosis protein (XIAP) and caspase-3, followed by subsequent counting of apoptotic cells after Hoechst 33258 staining. Both GO analysis and pathway analysis suggested that many signaling pathways, including the AKT signaling pathway, steroid hormone receptor signaling pathways, and others, were regulated by this group of differentially expressed miRNAs. A decrease in XIAP expression (mRNA and protein level) and caspase-3 protein levels and an increase in cleaved caspase-3 protein were observed in human ovarian granulosa cells transfected with pre-mir-23a, along with an increased occurrence of apoptosis. In conclusion, differentially expressed miRNAs in the plasma of POF patients may have regulatory effects on proliferation and apoptosis of granulosa cells by affecting different signaling pathways. Mir-23a may play important roles in regulating apoptosis via decreasing XIAP expression in human ovarian granulosa cells.

Free access

Liang Wu, Honghui Zhou, Haiyan Lin, Jianguo Qi, Cheng Zhu, Zhiying Gao, and Hongmei Wang

Until recently, the molecular pathogenesis of preeclampsia (PE) remained largely unknown. Reports have shown that circulating microRNAs (miRNAs) are promising novel biomarkers for cancer, pregnancy, tissue injury, and other conditions. The objective of this study was to identify differentially expressed miRNAs in plasma from severe preeclamptic pregnancies compared with plasma from normal pregnancies. By mature miRNA microarray analysis, 15 miRNAs, including 13 up- and two downregulated miRNAs, were screened to be differentially expressed in plasma from women with severe PE (sPE). Seven miRNAs, namely miR-24, miR-26a, miR-103, miR-130b, miR-181a, miR-342-3p, and miR-574-5p, were validated to be elevated in plasma from severe preeclamptic pregnancies by real-time quantitative stem-loop RT-PCR analysis. Gene ontology and pathway enrichment analyses revealed that these miRNAs were involved in specific biological process categories (including regulation of metabolic processes, regulation of transcription, and cell cycle) and signaling pathways (including the MAP kinase signaling pathway, the transforming growth factor-β signaling pathway, and pathways in cancer metastasis). This study presents, for the first time, the differential expression profile of circulating miRNAs in sPE patients. The seven elevated circulating miRNAs may play critical roles in the pathogenesis of sPE, and one or more of them may become potential markers for diagnosing sPE.

Free access

Qian Zhang, Song Yu, Xing Huang, Yi Tan, Cheng Zhu, Yan-Ling Wang, Haibin Wang, Hai-Yan Lin, Jiejun Fu, and Hongmei Wang

Cullin 3 (CUL3), a scaffold protein, assembles a large number of ubiquitin ligase complexes, similar to Skp1-Cullin 1-F-box protein complex. Several genetic models have shown that CUL3 is crucial for early embryonic development. Nevertheless, the role of CUL3 in human trophoblast function remains unclear. In this study, immunostaining revealed that CUL3 was strongly expressed in the villous cytotrophoblasts, the trophoblast column, and the invasive extravillous trophoblasts. Silencing CUL3 significantly inhibited the outgrowth of villous explant ex vivo and decreased invasion and migration of trophoblast HTR8/SVneo cells. Furthermore, CUL3 siRNA decreased pro-MMP9 activity and increased the levels of TIMP1 and 2. We also found that the level of CUL3 in the placental villi from pre-eclamptic patients was significantly lower as compared to that from their gestational age-matched controls. Moreover, in the lentiviral-mediated placenta-specific CUL3 knockdown mice, lack of CUL3 resulted in less invasive trophoblast cells in the maternal decidua. Taken together, these results suggest an essential role for CUL3 in the invasion and migration of trophoblast cells, and dysregulation of its expression may be associated with the onset of pre-eclampsia.

Free access

Ru Zheng, Yue Li, Huiying Sun, Xiaoyin Lu, Bao-Fa Sun, Rui Wang, Lina Cui, Cheng Zhu, Hai-Yan Lin, and Hongmei Wang

The syncytiotrophoblast (STB) plays a key role in maintaining the function of the placenta during human pregnancy. However, the molecular network that orchestrates STB development remains elusive. The aim of this study was to obtain broad and deep insight into human STB formation via transcriptomics. We adopted RNA sequencing (RNA-Seq) to investigate genes and isoforms involved in forskolin (FSK)-induced fusion of BeWo cells. BeWo cells were treated with 50 μM FSK or dimethyl sulfoxide (DMSO) as a vehicle control for 24 and 48 h, and the mRNAs at 0, 24 and 48 h were sequenced. We detected 28,633 expressed genes and identified 1902 differentially expressed genes (DEGs) after FSK treatment for 24 and 48 h. Among the 1902 DEGs, 461 were increased and 395 were decreased at 24 h, whereas 879 were upregulated and 763 were downregulated at 48 h. When the 856 DEGs identified at 24 h were traced individually at 48 h, they separated into 6 dynamic patterns via a K-means algorithm, and most were enriched in down–even and up–even patterns. Moreover, the gene ontology (GO) terms syncytium formation, cell junction assembly, cell fate commitment, calcium ion transport, regulation of epithelial cell differentiation and cell morphogenesis involved in differentiation were clustered, and the MAPK pathway was most significantly regulated. Analyses of alternative splicing isoforms detected 123,200 isoforms, of which 1376 were differentially expressed. The present deep analysis of the RNA-Seq data of BeWo cell fusion provides important clues for understanding the mechanisms underlying human STB formation.

Free access

Yue Li, Ru Zheng, Rui Wang, Xiaoyin Lu, Cheng Zhu, Hai-Yan Lin, Hongmei Wang, Xiaoguang Yu, and Jiejun Fu

The placenta has numerous functions, such as transporting oxygen and nutrients and building the immune tolerance of the fetus. Cell fusion is an essential process for placental development and maturation. In human placental development, mononucleated cytotrophoblast (CTB) cells can fuse to form a multinucleated syncytiotrophoblast (STB), which is the outermost layer of the placenta. Nephrin is a transmembrane protein that belongs to the Ig superfamily. Previous studies have shown that nephrin contributes to the fusion of myoblasts into myotubes in zebrafish and mice, presenting a functional conservation with its Drosophila ortholog sticks and stones. However, whether nephrin is involved in trophoblast syncytialization remains unclear. In this study, we report that nephrin was localized predominantly in the CTB cells and STB of human placenta villi from first trimester to term pregnancy. Using a spontaneous fusion model of primary CTB cells, the expression of nephrin was found to be increased during trophoblast cell fusion. Moreover, the spontaneous syncytialization and the expression of syncytin 2, connexin 43, and human chorionic gonadotropin beta were significantly inhibited by nephrin-specific siRNAs. The above results demonstrate that nephrin plays an important role in trophoblast syncytialization.

Free access

Wen-Lin Chang, Qing Yang, Hui Zhang, Hai-Yan Lin, Zhi Zhou, Xiaoyin Lu, Cheng Zhu, Li-Qun Xue, and Hongmei Wang

Placenta-specific protein 1 (PLAC1), a placenta-specific gene, is known to be involved in the development of placenta in both humans and mice. However, the precise role of PLAC1 in placental trophoblast function remains unclear. In this study, the localization of PLAC1 in human placental tissues and its physiological significance in trophoblast invasion and migration are investigated by technical studies including real-time RT-PCR, in situ hybridization, immunohistochemistry, and functional studies by utilizing cell invasion and migration assays in the trophoblast cell line HTR8/SVneo as well as the primary inducing extravillous trophoblasts (EVTs). The results show that PLAC1 is mainly detected in the trophoblast columns and syncytiotrophoblast of the first-trimester human placental villi, as well as in the EVTs that invade into the maternal decidua. Knockdown of PLAC1 by RNA interference significantly suppresses the invasion and migration of HTR8/SVneo cells and shortens the distance of the outgrowth of the induced EVTs from the cytotrophoblast column of the explants. All the above data suggests that PLAC1 plays an important role in human placental trophoblast invasion and migration.

Free access

Yan Wang, Hualin Huang, Minghua Zeng, Ru-Ping Quan, Jun-Ting Yang, Dan Guo, Ying Sun, Hongwen Deng, and Hongmei Xiao

In this study, we investigated a gene-edited (Zp2 MT/MT) rat model of infertility caused by the failure to express the zona pellucida glycoprotein 2 (ZP2) due to the significant reduction of mRNA amount. We examined the defects in the zona pellucida (ZP) caused by ZP2 nullification and the influence of these defects on aspects of oocyte development, including apoptosis and fertilization ability. To investigate the cause of the influence to the oocytes’ development, we evaluated the morphology of follicular transzonal projections (TZPs), known as ‘bridges’, which mediate the bidirectional signaling between the oocyte and surrounding granulosa cells and the level of reactive oxygen species (ROS) in ovulated eggs. Our results showed that two types of ZP defects were generated in the Zp2 MT/MT rat,that is, ZP intact but thinned and ZP cracked (or even absent). The fertilization rate of the ovulated eggs reduced in both types, while increased oocyte apoptosis was observed only in the latter type. Moreover, the increased oocyte apoptosis rate correlated closely with the reduction in follicular TZPs and increased ROS levels in ovulated egg. In conclusion, nullification of rat ZP2 destroyed the integrity of the ZP, impaired the bidirectional signaling between the oocyte and surrounding granulosa cells. Therefore, the resulting infertility likely occurs via elevation of oxidative stress and oocytes apoptosis.