Search Results

You are looking at 1 - 10 of 10 items for

  • Author: Hua Zhang x
Clear All Modify Search
Free access

Hua Zhang, Deepak Adhikari, Wenjing Zheng and Kui Liu

Ovarian aging is characterized by both a reduction in egg quality and a drastic reduction in the number of ovarian follicles. It has been generally accepted for 60 years that a fixed population of primordial follicles is established in the ovaries during early life, and in most mammalian species, oocytes cannot renew themselves in postnatal or adult life. This dogma, however, has been challenged over the past decade. In this review, we summarize the recent studies on primordial follicles and putative oogonial stem cells and discuss what resources in the ovary might be more reliable and promising source tools for combating ovarian aging.

Free access

Xiaohui Deng, Hua Zheng, Xuan Yu, Hongling Yu, Chengmei Zhang, Lan Chao, Ruichang Li and Wenjun Liu

The functional longevity of cryopreserved ovarian grafts is one of the most challenging questions regarding ovarian transplantation at present. This study used a rat ovarian grafting model to investigate whether ovarian tissues from adult rats, which had been cryopreserved by vitrification and followed by heterotopic transplantation, could establish long-term hormone secretion and follicle development. Fresh and cryopreserved ovarian tissues were autologously transplanted under the kidney capsule. One-third of the animals in each group (sham-operated, fresh autografts, cryopreserved autografts, or castrated) were killed 5, 8, or 10 months after transplantation. Vaginal cytology, serum estradiol (E2), progesterone, and the morphology of the reproductive tract were used to assess ovarian function. Both fresh and cryopreserved ovarian grafts survived well in all the animal models with comparable proportion of follicles at each stage of folliculogenesis at all three time points. The serum E2 and progesterone concentrations in the groups with fresh or cryopreserved grafts remained comparable with those in sham-operated controls at all investigated time points. However, a loss of grafts and primordial follicles following heterotopic transplantation was noted. In conclusion, the heterotopic autotransplantation of vitrified ovarian tissues from adult rat without vascular anastomosis can maintain long-term ovarian function and exert endocrine function in target organs, in spite of the reduction in follicle pool.

Free access

Zhen Teng, Chao Wang, Yijing Wang, Kun Huang, Xi Xiang, Wanbao Niu, Lizhao Feng, Lihua Zhao, Hao Yan and Hua Zhang

The reserve of primordial follicles determines the reproductive ability of the female mammal over its reproductive life. The primordial follicle is composed of two types of cells: oocytes and surrounding pre-granulosa cells. However, the underlying mechanism regulating primordial follicle assembly is largely undefined. In this study, we found that gap junction communication (GJC) established between the ovarian cells in the perinatal mouse ovary may be involved in the process. First, gap junction structures between the oocyte and surrounding pre-granulosa cells appear at about 19.0 dpc (days post coitum). As many as 12 gap junction-related genes are upregulated at birth, implying that a complex communication may exist between ovarian cells, because specifically silencing the genes of individual gap junction proteins, such as Gja 1, Gja4 or both, has no influence on primordial follicle assembly. On the other hand, non-specific blockers of GJC, such as carbenoxolone (CBX) and 18α-glycyrrhetinic acid (AGA), significantly inhibit mouse primordial follicle assembly. We proved that the temporal window for establishment of GJC in the fetal ovary is from 19.5 dpc to 1 dpp (days postpartum). In addition, the expression of ovarian somatic cell (OSC)-specific genes, such as Notch2, Foxl2 and Irx3, was negatively affected by GJC blockers, whereas oocyte-related genes, such as Ybx2, Nobox and Sohlh1, were hardly affected, implying that the establishment of GJC during this period may be more important to OSCs than to oocytes. In summary, our results indicated that GJC involves in the mouse primordial follicle assembly process at a specific temporal window that needs Notch signaling cross-talking.

Free access

Wen-Qing Shi, Shi-En Zhu, Dong Zhang, Wei-Hua Wang, Guo-Liang Tang, Yun-Peng Hou and Shu-Jun Tian

This study was designed to examine the effect of Taxol pretreatment on vitrification of porcine oocytes matured in vitro by an open pulled straw (OPS) method. In the first experiment, the effect of Taxol pretreatment and fluorescein diacetate (FDA) staining on parthenogenetic development of oocytes was evaluated. In the second experiment, viability, microtubule organization and embryo development of oocytes were assessed after oocytes were exposed to vitrification/warming solutions or after vitrification with or without Taxol pretreatment. The results showed that Taxol pretreatment and/or FDA staining did not negatively influence the oocyte’s developmental competence after parthenogenetic activation. After being exposed to vitrification/warming solutions, the survival rate (83.3%) of the oocytes was significantly (P < 0.05) reduced as compared with that in the control (100%). Vitrification/warming procedures further reduced the survival rates of oocytes regardless of oocytes being treated with (62.1%) or without (53.8%) Taxol. The proportions of oocytes with normal spindle configuration were significantly reduced after the oocytes were exposed to vitrification/warming solutions (38.5%) or after vitrification with (10.3%) or without (4.1%) Taxol pretreatment as compared with that in control (76.8%). The rates of two-cell-stage (5.6–53.2%) embryos at 48 h and blastocysts (0–3.8%) at 144 h after activation were significantly reduced after exposure to vitrification/warming solutions or after vitrification as compared with control (90.9% and 26.6% respectively). However, the proportion of vitrified oocytes developed to two-cell stage was significantly higher when oocytes were pretreated with (24.3%) than without (5.6%) Taxol. These results indicate that pretreatment of oocytes with Taxol before vitrification helps to reduce the damage induced by vitrification and is a potential way to improve the development of vitrified porcine oocytes.

Free access

Yong-Hai Li, Yi Hou, Wei Ma, Jin-Xiang Yuan, Dong Zhang, Qing-Yuan Sun and Wei-Hua Wang

CD9 is a cell surface protein that participates in many cellular processes, such as cell adhesion. Fertilization involves sperm and oocyte interactions including sperm binding to oocytes and sperm–oocyte fusion. Thus CD9 may play an essential role during fertilization in mammals. The present study was conducted to examine whether CD9 is present in porcine gametes and whether it participates in the regulation of sperm–oocyte interactions. The presence of CD9 in ovarian tissues, oocytes and spermatozoa was examined by immunohistochemistry, immunofluorescence and immunoblotting. Sperm binding and penetration of oocytes treated with CD9 antibody were examined by in vitro fertilization. The results showed that CD9 was present on the plasma membrane of oocytes at different developmental stages. A 24 kDa protein was found in oocytes during in vitro maturation by immunoblotting and its quantity was significantly (P < 0.001) increased as oocytes underwent maturation and reached the highest level after the oocytes had been cultured for 44 h. No positive CD9 staining was found in the spermatozoa. Both sperm binding to ooplasma and sperm penetration into oocytes were significantly (P < 0.01) reduced in anti-CD9 antibody-treated oocytes (1.2 ± 0.2 per oocyte and 16.6% respectively) as compared with oocytes in the controls (2.5 ± 0.4 per oocyte and 70.3% respectively). These results indicated that CD9 is expressed in pig oocytes during early growth and meiotic maturation and that it participates in sperm–oocyte interactions during fertilization.

Restricted access

Wen-Wen Gu, Long Yang, Xing-Xing Zhen, Yan Gu, Hua Xu, Miao Liu, Qian Yang, Xuan Zhang and J Wang

The invasion of maternal decidua by extravillous trophoblast (EVT) is essential for the establishment and maintenance of pregnancy, and abnormal trophoblast invasion could lead to placenta-associated pathologies including early pregnancy loss and preeclampsia. SEC5, a component of the exocyst complex, plays important roles in cell survival and migration, but its role in early pregnancy has not been reported. Thus, the present study was performed to explore the functions of SEC5 in trophoblast cells. The results showed that SEC5 expression in human placental villi at first trimester was significantly higher than it was at the third trimester, and it was abundently localized in the cytotrophoblast (CTB) and the trophoblastic column. SEC5 knockdown was accompanied by reduced migration and invasion in HTR-8/SVneo cells. In addition, the expression and plasma membrane distribution of integrin β1 was also decreased. Furthermore, shRNA-mediated knockdown of SEC5 inhibited the outgrowth of first trimester placental explants. SEC5 and InsP3R were colocalized in the cytoplasm of HTR-8/SVneo cells, and the cell-permeant calcium chelator BAPTA-AM could significantly inhibit HTR-8/SVneo cell invasion. The Ca2+ imaging results showed that the 10% fetal bovine serum-stimulated cytosolic calcium concentration ([Ca2+]c) was not only reduced by downregulated SEC5 but also was blocked by the InsP3R inhibitor. Furthermore, either the [Ca2+]c was buffered by BAPTA-AM or the knockdown of SEC5 disrupted HTR-8/SVneo cell F-actin stress fibers and caused cytoskeleton derangement. Taken together, our results suggest that SEC5 might be involved in regulating trophoblast cell migration and invasion through the integrin/Ca2+ signal pathway to induce cytoskeletal rearrangement.

Free access

Huan Zhang, Xiaohua Jiang, Yuanwei Zhang, Bo Xu, Juan Hua, Tieliang Ma, Wei Zheng, Rui Sun, Wei Shen, Howard J Cooke, Qiaomei Hao, Jie Qiao and Qinghua Shi

In mammals, the primordial follicle pool, providing all oocytes available to a female throughout her reproductive life, is established perinatally. Dysregulation of primordial follicle assembly results in female reproductive diseases, such as premature ovarian insufficiency and infertility. Female mice lacking Dicer1 (Dicer), a gene required for biogenesis of microRNAs, show abnormal morphology of follicles and infertility. However, the contribution of individual microRNAs to primordial follicle assembly remains largely unknown. Here, we report that microRNA 376a (miR-376a) regulates primordial follicle assembly by modulating the expression of proliferating cell nuclear antigen (Pcna), a gene we previously reported to regulate primordial follicle assembly by regulating oocyte apoptosis in mouse ovaries. miR-376a was shown to be negatively correlated with Pcna mRNA expression in fetal and neonatal mouse ovaries and to directly bind to Pcna mRNA 3′ untranslated region. Cultured 18.5 days postcoitum mouse ovaries transfected with miR-376a exhibited decreased Pcna expression both in protein and mRNA levels. Moreover, miR-376a overexpression significantly increased primordial follicles and reduced apoptosis of oocytes, which was very similar to those in ovaries co-transfected with miR-376a and siRNAs targeting Pcna. Taken together, our results demonstrate that miR-376a regulates primordial follicle assembly by modulating the expression of Pcna. To our knowledge, this is the first microRNA–target mRNA pair that has been reported to regulate mammalian primordial follicle assembly and further our understanding of the regulation of primordial follicle assembly.

Free access

Dong Zhang, Shen Yin, Man-Xi Jiang, Wei Ma, Yi Hou, Cheng-Guang Liang, Ling-Zhu Yu, Wei-Hua Wang and Qing-Yuan Sun

The present study was designed to investigate the localization and function of cytoplasmic dynein (dynein) during mouse oocyte meiosis and its relationship with two major spindle checkpoint proteins, mitotic arrest-deficient (Mad) 1 and Mad2. Oocytes at various stages during the first meiosis were fixed and immunostained for dynein, Mad1, Mad2, kinetochores, microtubules, and chromosomes. Some oocytes were treated with nocodazole before examination. Anti-dynein antibody was injected into the oocytes at germinal vesicle (GV) stage before the examination of its effects on meiotic progression or Mad1 and Mad2 localization. Results showed that dynein was present in the oocytes at various stages from GV to metaphase II and the locations of Mad1 and Mad2 were associated with dynein’s movement. Both Mad1 and Mad2 had two existing states: one existed in the cytoplasm (cytoplasmic Mad1 or cytoplasmic Mad2), which did not bind to kinetochores, while the other bound to kinetochores (kinetochore Mad1 or kinetochore Mad2). The equilibrium between the two states varied during meiosis and/or in response to the changes of the connection between microtubules and kinetochores. Cytoplasmic Mad1 and Mad2 recruited to chromosomes when the connection between microtubules and chromosomes was destroyed. Inhibition of dynein interferes with cytoplasmic Mad1 and Mad2 transportation from chromosomes to spindle poles, thus inhibits checkpoint silence and delays anaphase onset. These results indicate that dynein may play a role in spindle checkpoint inactivation.

Free access

Yan Xu, Miao Liu, Yi-hua Gu, Xiao-feng Jia, Yong-Mei Chen, Michelle Santos, Ai-Zhen Wu, Xiao-dong Zhang, Hui-Juan Shi and Ching-Ling C Chen

With tetraspanning topology, members of the membrane-spanning four-domain subfamily A (MS4A) may facilitate signaling or ion channel functions in many tissues. In this study, we report the cloning of a full-length cDNA from rat testis, designated Ms4a14 (Sp3111), which encodes the MS4A protein with 1139 amino acid residues. In situ hybridization and immunohistochemical analyses indicate that Ms4a14 is predominantly expressed from round spermatids to spermatozoa at specific stages in the rat testis at both the mRNA and protein level. Immunofluorescence analysis revealed that MS4A14 (SP3111) is located in the acrosome and the midpiece of the flagellum in mature sperm. Previously, we explored and reported the involvement of MS4A14 in reproductive functions, using antibody blockage during IVF and a transgenic RNA interference method in a mouse model. Our results suggested that MS4A14 is involved in fertilization and zygote division. As MS4A14 protein exists in mammals, such as humans, cows, dogs, and rodents, MS4A14 may play a ubiquitous role in mammalian reproduction.

Restricted access

Xue-Ying Zhang, Yi-Meng Xiong, Ya-Jing Tan, Li Wang, Rong Li, Yong Zhang, Xin-Mei Liu, Xian-Hua Lin, Li Jin, Yu-Ting Hu, Zhen-Hua Tang, Zheng-Mu Wu, Feng-Hua Yin, Zheng-Quan Wang, Ye Xiao, Jian-Zhong Sheng and He-Feng Huang

Fertilization failure often occurs during in vitro fertilization (IVF) cycles despite apparently normal sperm and oocytes. Accumulating evidence suggests that mitochondria play crucial roles in the regulation of sperm function and male fertility. 3-Nitrophthalic acid (3-NPA) can induce oxidative stress in mitochondria, and melatonin, as an antioxidant, can improve mitochondrial function by reducing mitochondrial oxidative stress. The role of sperm mitochondrial dysfunction in fertilization failure during IVF is unclear. The present study revealed that spermatozoa with low, or poor, fertilization rates had swollen mitochondria, increased mitochondria-derived ROS, and attenuated mitochondrial respiratory capacity. 3-NPA treatment enhanced mitochondrial dysfunction in sperm. Spermatozoa with poor fertilization rates, and spermatozoa treated with 3-NPA, had reduced penetration ability. The concentration of melatonin was decreased in semen samples with low and poor fertilization rates. Melatonin, not only decreased excessive mitochondria-derived ROS, but also ‘rescued’ the reduced penetration capacity of spermatozoa treated with 3-NPA. Taken together, the study suggested that mitochondria-derived ROS and mitochondrial respiratory capacity are independent bio-markers for sperm dysfunction, and melatonin may be useful in improving sperm quality and overall male fertility.