MicroRNAs (miRNAs) are short non-coding RNA molecules playing regulatory roles by repressing translation or cleaving RNA transcripts. Recent studies indicate that miRNAs are mechanistically involved in the development of mammalian spermatogenesis. However, little work has been done to compare the miRNA expression patterns between immature and mature mouse testes. Here, we employed a miRNA microarray to detect 892 miRNAs in order to evaluate the expression patterns of miRNA. The expression of 19 miRNAs was significantly different between immature and mature individuals. Fourteen miRNAs were significantly upregulated and five miRNAs were downregulated in immature mice and this result was further confirmed by a quantitative real-time RT-PCR assay. Many target genes involved in spermatogenesis are predicted by MiRscan performing miRNA target scanning. Our data indicated specific miRNAs expression in immature mouse testis and suggested that miRNAs have a role in regulating spermatogenesis.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: Huaqin Sun x
- Refine by Access: All content x
Naihong Yan, Yilu Lu, Huaqin Sun, Dachang Tao, Sizhong Zhang, Wenying Liu, and Yongxin Ma
Huijuan Liao, Yan Chen, Yulong Li, Shaolong Xue, Mingfeng Liu, Ziyuan Lin, Yanyan Liu, Hsiao Chang Chan, Xiaohu Zhang, and Huaqin Sun
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene affect fertility in both sexes. However, the involvement of CFTR in regulating germ cell development remains largely unknown. Here, we used zebrafish model to investigate the role of CFTR in primordial germ cells (PGCs) development. We generated a cftr frameshift mutant zebrafish line using CRISPR/Cas9 technique and investigated the migration of PGCs during early embryo development. Our results showed that loss of Cftr impairs the migration of PGCs from dome stages onward. The migration of PGCs was also perturbed by treatment of CFTRinh-172, a gating-specific CFTR channel inhibitor. Moreover, defected PGCs migration in cftr mutant embryos can be partially rescued by injection of WT but not other channel-defective mutant cftr mRNAs. Finally, we observed the elevation of cxcr4b, cxcl12a, rgs14a and ca15b, key factors involved in zebrafish PGCs migration, in cftr-mutant zebrafish embryos. Taken together, the present study revealed an important role of CFTR acting as an ion channel in regulating PGCs migration during early embryogenesis. Defect of which may impair germ cell development through elevation of key factors involved in cell motility and response to chemotactic gradient in PGCs.