Search Results

You are looking at 1 - 10 of 33 items for

  • Author: Hui Li x
  • Refine by access: All content x
Clear All Modify Search
Hui Li Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA

Search for other papers by Hui Li in
Google Scholar
PubMed
Close
and
Daniel J Spade Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA

Search for other papers by Daniel J Spade in
Google Scholar
PubMed
Close

Fetal development of the mammalian testis relies on a series of interrelated cellular processes: commitment of somatic progenitor cells to Sertoli and Leydig cell fate, migration of endothelial cells and Sertoli cells, differentiation of germ cells, deposition of the basement membrane, and establishment of cell–cell contacts, including Sertoli–Sertoli and Sertoli–germ cell contacts. These processes are orchestrated by intracellular, endocrine, and paracrine signaling processes. Because of this complexity, testis development can be disrupted by a variety of environmental toxicants. The toxicity of phthalic acid esters (phthalates) on the fetal testis has been the subject of extensive research for two decades, and phthalates have become an archetypal fetal testis toxicant. Phthalates disrupt the seminiferous cord formation and maturation, Sertoli cell function, biosynthesis of testosterone in Leydig cells, and impair germ cell survival and development, producing characteristic multinucleated germ cells. However, the mechanisms responsible for these effects are not fully understood. This review describes current knowledge of the adverse effects of phthalates on the fetal testis and their associated windows of sensitivity, and compares and contrasts the mechanisms by which toxicants of current interest, bisphenol A and its replacements, analgesics, and perfluorinated alkyl substances, alter testicular developmental processes. Working toward a better understanding of the molecular mechanisms responsible for phthalate toxicity will be critical for understanding the long-term impacts of environmental chemicals and pharmaceuticals on human reproductive health.

Free access
Kuan-Hao Tsui Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan

Search for other papers by Kuan-Hao Tsui in
Google Scholar
PubMed
Close
,
Peng-Hui Wang Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
Division of Gynecology, Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
Department of Obstetrics and Gynecology, National Yang-Ming University Hospital, Ilan, Taiwan
Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan
Department of Medical Research, China Medical University Hospital, Taichung, Taiwan

Search for other papers by Peng-Hui Wang in
Google Scholar
PubMed
Close
,
Li-Te Lin Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan

Search for other papers by Li-Te Lin in
Google Scholar
PubMed
Close
, and
Chia-Jung Li Research Assistant Center, Show Chwan Health Memorial Hospital, Changhua, Taiwan

Search for other papers by Chia-Jung Li in
Google Scholar
PubMed
Close

Because ovarian granulosa cells are essential for oocyte maturation and development, we validated human granulosa HO23 cells to evaluate the ability of the DHEA to prevent cell death after starvation. The present study was aimed to investigate whether DHEA could protect against starvation-induced apoptosis and necroptosis in human oocyte granulosa HO23 cells. The starvation was induced by treatment of serum-free (SF) medium for 4 h in vitro. Starvation-induced mitochondrial depolarization, cytochrome c release and caspase-3 activation were largely prevented by DHEA in HO23 cells. We found that treatment with DHEA can restore starvation-induced reactive oxygen species (ROS) generation and mitochondrial membrane potential imbalance. In addition, treatment of DHEA prevents cell death via upregulation of cytochrome c and downregulation of BAX in mitochondria. Most importantly, DHEA is ameliorated to mitochondrial function mediated through the decrease in mitochondrial ROS, maintained mitochondrial morphology, and enhancing the ability of cell proliferation and ROS scavenging. Our present data strongly indicate that DHEA reduces programmed cell death (apoptosis and necroptosis) in granulosa HO23 cells through multiple interactions with the mitochondrion-dependent programmed cell death pathway. Taken together, our data suggest that the presence of DHEA could be beneficial to protect human oocyte granulosa HO23 cells under in vitro culture conditions during various assisted reproductive technology (ART) programs.

Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/154/2/101/suppl/DC1

Free access
Hui Li Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA

Search for other papers by Hui Li in
Google Scholar
PubMed
Close
,
Qianhui Huang Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA

Search for other papers by Qianhui Huang in
Google Scholar
PubMed
Close
,
Yu Liu Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA

Search for other papers by Yu Liu in
Google Scholar
PubMed
Close
, and
Lana X Garmire Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA

Search for other papers by Lana X Garmire in
Google Scholar
PubMed
Close

Human placenta is a complex and heterogeneous organ interfacing between the mother and the fetus that supports fetal development. Alterations to placental structural components are associated with various pregnancy complications. To reveal the heterogeneity among various placenta cell types in normal and diseased placentas, as well as elucidate molecular interactions within a population of placental cells, a new genomics technology called single cell RNA-seq (or scRNA-seq) has been employed in the last couple of years. Here we review the principles of scRNA-seq technology, and summarize the recent human placenta studies at scRNA-seq level across gestational ages as well as in pregnancy complications, such as preterm birth and preeclampsia. We list the computational analysis platforms and resources available for the public use. Lastly, we discuss the future areas of interest for placenta single cell studies, as well as the data analytics needed to accomplish them.

Open access
Jia-Wei Shi Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People’s Republic of China
Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Jia-Wei Shi in
Google Scholar
PubMed
Close
,
Hui-Li Yang Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Hui-Li Yang in
Google Scholar
PubMed
Close
,
Zhen-Zhen Lai Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Zhen-Zhen Lai in
Google Scholar
PubMed
Close
,
Hui-Hui Shen Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Hui-Hui Shen in
Google Scholar
PubMed
Close
,
Xue-Yun Qin Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Xue-Yun Qin in
Google Scholar
PubMed
Close
,
Xue-Min Qiu Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Xue-Min Qiu in
Google Scholar
PubMed
Close
,
Yan Wang Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Yan Wang in
Google Scholar
PubMed
Close
,
Jiang-Nan Wu Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Jiang-Nan Wu in
Google Scholar
PubMed
Close
, and
Ming-Qing Li Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People’s Republic of China
Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People’s Republic of China
Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People’s Republic of China

Search for other papers by Ming-Qing Li in
Google Scholar
PubMed
Close

The survival and development of a semi-allogeneic fetus during pregnancy require the involvement of decidual stromal cells (DSCs), a series of cytokines and immune cells. Insulin-like growth factor 1 (IGF1) is a low molecular weight peptide hormone with similar metabolic activity and structural characteristics of proinsulin, which exerts its biological effects by binding with its receptor. Emerging evidence has shown that IGF1 is expressed at the maternal–fetal interface, but its special role in establishment and maintenance of pregnancy is largely unknown. Here, we found that the expression of IGF1 in the decidua was significantly higher than that in the endometrium. Additionally, decidua from women with normal pregnancy had high levels of IGF1 compared with that from women with unexplained recurrent spontaneous miscarriage. Estrogen and progesterone led to the increase of IGF1 in DSCs through upregulating the expression of WISP2. Recombinant IGF1 or DSCs-derived IGF1 increased the survival, reduced the apoptosis of DSCs, and downregulated the cytotoxicity of decidual NK cells (dNK) through interaction with IGF1R. These data suggest that estrogen and progesterone stimulate the growth of DSCs and impair the cytotoxicity of dNK possibly by the WISP2/IGF1 signaling pathway.

Restricted access
Xiu Shi The Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), No. 368 North-Jiangdong Road, Gulou, Nanjing, Jiangsu 210036, People's Republic of China

Search for other papers by Xiu Shi in
Google Scholar
PubMed
Close
,
Wei Xu The Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), No. 368 North-Jiangdong Road, Gulou, Nanjing, Jiangsu 210036, People's Republic of China

Search for other papers by Wei Xu in
Google Scholar
PubMed
Close
,
Hui-Hua Dai The Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), No. 368 North-Jiangdong Road, Gulou, Nanjing, Jiangsu 210036, People's Republic of China

Search for other papers by Hui-Hua Dai in
Google Scholar
PubMed
Close
,
Ying Sun The Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), No. 368 North-Jiangdong Road, Gulou, Nanjing, Jiangsu 210036, People's Republic of China

Search for other papers by Ying Sun in
Google Scholar
PubMed
Close
, and
Xiu-Li Wang The Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), No. 368 North-Jiangdong Road, Gulou, Nanjing, Jiangsu 210036, People's Republic of China

Search for other papers by Xiu-Li Wang in
Google Scholar
PubMed
Close

To compare the expression patterns of steroid receptor coactivators (SRCs) and steroid-induced stromal cell-derived factor 1 (CXCL12 (SDF1)) in normal and ectopic endometrium and to explore the roles of NCOA1 (SRC1) and NCOA2 (SRC2) in the steroid-induced CXCL12 expression in normal and ectopic endometrial stromal cells (ESCs). The NCOA1, NCOA2, NCOA3 (SRC3), and CXCL12 (SDF1)α mRNA levels in normal and ectopic endometrium were analyzed by quantitative real-time PCR. Steroid-induced CXCL12 expression was detected by the ELISA method and the chemotactic activity of conditioned supernatant to monocyte was assessed by the Boyden chamber method before and after the silencing of NCOA1 or NCOA2 with siRNA in normal and ectopic ESCs. The expression of NCOA1 and CXCL12 in ectopic endometrium was significantly greater than that in normal endometrium in the secretory phase. Progesterone (P4) was able to significantly inhibit estradiol (E2)-stimulated CXCL12 expression in normal and ectopic ESCs. The inhibitory rate of P4 in ectopic ESCs at 72 and 96 h was significantly lower than that in normal ESCs. Silencing of NCOA1 but not NCOA2 significantly reduced the E2-induced CXCL12 expression in normal and ectopic ESCs. The ability of P4 to inhibit E2-induced CXCL12 expression and monocyte chemotaxis in normal and ectopic ESCs was significantly attenuated when NCOA2 was silenced. NCOA1 plays a necessary role in E2-induced CXCL12 expression and NCOA2 is required for P4 to inhibit the E2-induced CXCL12 production in normal and ectopic endometrium.

Free access
Hui Li Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China

Search for other papers by Hui Li in
Google Scholar
PubMed
Close
,
Yu-Han Meng Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China

Search for other papers by Yu-Han Meng in
Google Scholar
PubMed
Close
,
Wen-Qing Shang Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China

Search for other papers by Wen-Qing Shang in
Google Scholar
PubMed
Close
,
Li-Bing Liu Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China

Search for other papers by Li-Bing Liu in
Google Scholar
PubMed
Close
,
Xuan Chen Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China

Search for other papers by Xuan Chen in
Google Scholar
PubMed
Close
,
Min-Min Yuan Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China

Search for other papers by Min-Min Yuan in
Google Scholar
PubMed
Close
,
Li-Ping Jin Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China
Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China

Search for other papers by Li-Ping Jin in
Google Scholar
PubMed
Close
,
Ming-Qing Li Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China
Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China
Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China

Search for other papers by Ming-Qing Li in
Google Scholar
PubMed
Close
, and
Da-Jin Li Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China
Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, NPFPC Key Laboratory of Contraceptive Drugs & Devices, Hospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, China

Search for other papers by Da-Jin Li in
Google Scholar
PubMed
Close

Chemokine CCL24, acting through receptor CCR3, is a potent chemoattractant for eosinophil in allergic diseases and parasitic infections. We recently reported that CCL24 and CCR3 are co-expressed by trophoblasts in human early pregnant uterus. Here we prove with evidence that steroid hormones estradiol (E), progesterone (P), and human chorionic gonadotropin (hCG), as well as decidual stromal cells (DSCs) could regulate the expression of CCL24 and CCR3 of trophoblasts. We further investigate how trophoblast-derived CCL24 mediates the function of trophoblasts in vitro, and conclude that CCL24/CCR3 promotes the proliferation, viability and invasiveness of trophoblasts. In addition, analysis of the downstream signaling pathways of CCL24/CCR3 show that extracellular signal-regulated kinases (ERK1/2) and phosphoinositide 3-kinase (PI3K) pathways may contribute to the proliferation, viability and invasiveness of trophoblasts by activating intracellular molecules Ki67 and matrix metallopeptidase 9 (MMP9). However, we did not observe any inhibitory effect on trophoblasts when blocking c-Jun N-terminal kinase (JNK) or p38 pathways. In conclusion, our data suggests that trophoblast-derived CCL24 at the maternal-fetal interface promotes trophoblasts cell growth and invasiveness by ERK1/2 and PI3K pathways. Meanwhile, pregnancy-related hormones (P and hCG), as well as DSCs could up-regulate CCL24/CCR3 expression in trophoblasts, which may indirectly influence the biological functions of trophoblasts. Thus, our results provide a possible explanation for the growth and invasion of trophoblasts in human embryo implantation.

Free access
Hui-Li Yang Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Hui-Li Yang in
Google Scholar
PubMed
Close
,
Wen-Jie Zhou Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, People’s Republic of China
Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People’s Republic of China

Search for other papers by Wen-Jie Zhou in
Google Scholar
PubMed
Close
,
Kai-Kai Chang Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Kai-Kai Chang in
Google Scholar
PubMed
Close
,
Jie Mei Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, People’s Republic of China

Search for other papers by Jie Mei in
Google Scholar
PubMed
Close
,
Li-Qing Huang Department of Statistics and Psychology, College of Letters and Science, University of California Davis, Davis, California, USA

Search for other papers by Li-Qing Huang in
Google Scholar
PubMed
Close
,
Ming-Yan Wang Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Ming-Yan Wang in
Google Scholar
PubMed
Close
,
Yi Meng Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Yi Meng in
Google Scholar
PubMed
Close
,
Si-Yao Ha Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Si-Yao Ha in
Google Scholar
PubMed
Close
,
Da-Jin Li Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, People’s Republic of China
Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People’s Republic of China

Search for other papers by Da-Jin Li in
Google Scholar
PubMed
Close
, and
Ming-Qing Li Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, People’s Republic of China
Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People’s Republic of China

Search for other papers by Ming-Qing Li in
Google Scholar
PubMed
Close

The dysfunction of NK cells in women with endometriosis (EMS) contributes to the immune escape of menstrual endometrial fragments refluxed into the peritoneal cavity. The reciprocal communications between endometrial stromal cells (ESCs) and lymphocytes facilitate the development of EMS. However, the mechanism of these communications on cytotoxicity of natural killer (NK) cells in endometriotic milieus is still largely unknown. To imitate the local immune microenvironment, the co-culture systems of ESCs from patients with EMS and monocyte-derived macrophages or of ESCs, macrophages and NK cells were constructed. The cytokine levels in the co-culture unit were evaluated by ELISA. The expression of functional molecules in NK cells was detected by flow cytometry (FCM). The NK cell behaviors in vitro were analyzed by cell counting kit-8 and cytotoxic activation assays. After incubation with ESCs and macrophages, the expression of CD16, NKG2D, perforin and IFN-γ, viability and cytotoxicity of NK cells were significantly downregulated. The secretion of interleukin (IL)-1β, IL-10 and transforming growth factor (TGF)-β in the co-culture system of ESCs and macrophages was increased. Exposure with anti-IL-10 receptor β neutralizing antibody (αhIL-10Rβ) or αTGF-β could partly reverse these effects of ESCs and macrophages on NK cells in vitro. These results suggest that the interaction between macrophages and ESCs downregulates cytotoxicity of NK cells possibly by stimulating the secretion of IL-10 and TGF-β, and may further trigger the immune escape of ectopic fragments and promote the occurrence and the development of EMS.

Free access
Jing Xue Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, People's Republic of China

Search for other papers by Jing Xue in
Google Scholar
PubMed
Close
,
Hui Zhang Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, People's Republic of China

Search for other papers by Hui Zhang in
Google Scholar
PubMed
Close
,
Wei Liu Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, People's Republic of China

Search for other papers by Wei Liu in
Google Scholar
PubMed
Close
,
Ming Liu Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, People's Republic of China

Search for other papers by Ming Liu in
Google Scholar
PubMed
Close
,
Min Shi Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, People's Republic of China

Search for other papers by Min Shi in
Google Scholar
PubMed
Close
,
Zeqing Wen Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, People's Republic of China

Search for other papers by Zeqing Wen in
Google Scholar
PubMed
Close
, and
Changzhong Li Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, People's Republic of China

Search for other papers by Changzhong Li in
Google Scholar
PubMed
Close

Adenomyosis is a finding that is associated with dysmenorrhea and heavy menstrual bleeding, associated with PI3K/AKT signaling overactivity. To investigate the effect of metformin on the growth of eutopic endometrial stromal cells (ESCs) from patients with adenomyosis and to explore the involvement of AMP-activated protein kinase (AMPK) and PI3K/AKT pathways. Primary cultures of human ESCs were derived from normal endometrium (normal endometrial stromal cells (N-ESCs)) and adenomyotic eutopic endometrium (adenomyotic endometrial stroma cells (A-ESCs)). Expression of AMPK was determined using immunocytochemistry and western blot analysis. 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assays were used to determine the effects of metformin and compound C on ESCs and also to detect growth and proliferation of ESCs. AMPK and PI3K/AKT signaling was determined by western blotting. A-ECSs exhibited greater AMPK expression than N-ESCs. Metformin inhibited proliferation of ESCs in a concentration-dependent manner. The IC50 was 2.45 mmol/l for A-ESCs and 7.87 mmol/l for N-ESCs. Metformin increased AMPK activation levels (p-AMPK/AMPK) by 2.0±0.3-fold in A-ESCs, 2.3-fold in A-ESCs from the secretory phase, and 1.6-fold in the proliferation phase. The average reduction ratio of 17β-estradiol on A-ESCs was 2.1±0.8-fold in proliferative phase and 2.5±0.5-fold in secretory phase relative to the equivalent groups not treated with 17β-estradiol. The inhibitory effects of metformin on AKT activation (p-AKT/AKT) were more pronounced in A-ESCs from the secretory phase (3.2-fold inhibition vs control) than in those from the proliferation phase (2.3-fold inhibition vs control). Compound C, a selective AMPK inhibitor, abolished the effects of metformin on cell growth and PI3K/AKT signaling. Metformin inhibits cell growth via AMPK activation and subsequent inhibition of PI3K/AKT signaling in A-ESCs, particularly during the secretory phase, suggesting a greater effect of metformin on A-ESCs from secretory phase.

Free access
Wen-Hui Zhou Laboratory for Reproductive Immunology, Department of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
Laboratory for Reproductive Immunology, Department of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China

Search for other papers by Wen-Hui Zhou in
Google Scholar
PubMed
Close
,
Lin Dong Laboratory for Reproductive Immunology, Department of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China

Search for other papers by Lin Dong in
Google Scholar
PubMed
Close
,
Mei-Rong Du Laboratory for Reproductive Immunology, Department of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China

Search for other papers by Mei-Rong Du in
Google Scholar
PubMed
Close
,
Xiao-Yong Zhu Laboratory for Reproductive Immunology, Department of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China

Search for other papers by Xiao-Yong Zhu in
Google Scholar
PubMed
Close
, and
Da-Jin Li Laboratory for Reproductive Immunology, Department of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
Laboratory for Reproductive Immunology, Department of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China

Search for other papers by Da-Jin Li in
Google Scholar
PubMed
Close

Immune regulation during pregnancy is complex, and thus an optimal therapy for pregnancy complications is always a big challenge to reproductive medicine. Cyclosporin A (CsA), a potent immunosuppressant, prevents rejection of allografts by hosts, but little is known about the modulating effect of CsA on the materno-fetal relationship. Here, pregnant CBA/J females mated with DBA/2 males as an abortion-prone model were administered with CsA on day 4.5 of gestation, and the pregnant CBA/J females mated with BALB/c males were established as successful pregnancy control. It was demonstrated that administration of CsA at the window of implantation significantly up-regulated the expression of CTLA-4, while down-regulating the levels of CD80, CD86, and CD28 at the materno-fetal interface in the CBA/J×DBA/2 abortion-prone matings, and the embryo resorption rate of the abortion-prone matings reduced significantly after CsA treatment, implying that modulation of costimulatory molecule expression by CsA might contribute to preventing the fetus from maternal immune attack. In addition, treatment with CsA induced enhanced growth and reduced cell apoptosis of the murine trophoblast cells. Together, these findings indicate that CsA has a beneficial effect on the materno-fetal interface in abortion-prone matings, leading to a pregnancy outcome improvement, which might provide new therapeutics for spontaneous pregnancy wastage.

Free access
Shangang Li Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine and Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200092, P. R. China

Search for other papers by Shangang Li in
Google Scholar
PubMed
Close
,
Xuejin Chen Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine and Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200092, P. R. China

Search for other papers by Xuejin Chen in
Google Scholar
PubMed
Close
,
Zhenfu Fang Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine and Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200092, P. R. China

Search for other papers by Zhenfu Fang in
Google Scholar
PubMed
Close
,
Jianjun Shi Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine and Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200092, P. R. China

Search for other papers by Jianjun Shi in
Google Scholar
PubMed
Close
, and
Hui Z Sheng Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine and Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200092, P. R. China

Search for other papers by Hui Z Sheng in
Google Scholar
PubMed
Close

Somatic cell nuclear transfer offers new opportunities for genetic engineering and genome preservation in mammalian animal species. We show that, in addition to cumulus cells, cultured adult rabbit fibroblasts are also capable of supporting full-term development after nuclear transfer. Nuclear transfer embryos constructed using serum-starved fibroblasts showed a significantly higher developmental rate than non-starved fibroblasts through preimplantation stages. A total of 467 nuclear transfer embryos were transferred into the oviducts of pseudo pregnant mothers. Eight of the 20 surrogate rabbits carried the pregnancy to term and five of them gave birth naturally to a total of nine rabbits. However, all of the offspring died before postnatal day 10. A Caesarean section was performed on three surrogates, giving birth to a total of five rabbits, three of them survived and grew into healthy adults. DNA analyses confirmed that these rabbits were genetically identical to the donor male rabbit. The present study demonstrates that rabbits can be cloned from adult fibroblasts after culture.

Free access