Search Results

You are looking at 1 - 10 of 23 items for

  • Author: Hui Wang x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Weipeng Xiong, Haikun Wang, Hui Wu, Yongmei Chen, and Daishu Han

Apoptotic spermatogenic cells and residual bodies are phagocytosed and degraded by Sertoli cells during mammalian spermatogenesis. The meaning of this event remains to be clarified. In this report, we demonstrate that apoptotic spermatogenic cells and residual bodies can be used to produce ATP by Sertoli cells after phagocytosis of them. Sertoli cells produced the highest level of ATP compared with other testicular cells. Phagocytosis assay in vitro showed that engulfment of apoptotic spermatogenic cells increases ATP production by Sertoli cells. The increased ATP production was detected in seminiferous tubules at the stages where phagocytosis occurs. Induced apoptosis of spermatogenic cells in vivo increased ATP production in seminiferous tubules. The augmentation of ATP production both in vitro and in vivo associated with the lipid formation in Sertoli cells after phagocytosis of apoptotic spermatogenic cells. The lipid β-oxidation was a predominant pathway to produce ATP in Sertoli cells. We conclude that after phagocytosis by Sertoli cells, apoptotic spermatogenic cells are degraded to form lipids that are then used to produce ATP. The results suggest that apoptotic spermatogenic cells can be energy sources for Sertoli cells that may define a novel meaning of spermatogenic cell death.

Free access

Weipeng Xiong, Yongmei Chen, Huizhen Wang, Haikun Wang, Hui Wu, Qingxian Lu, and Daishu Han

The apoptotic spermatogenic cells and residual bodies are phagocytosed and degraded by Sertoli cells during spermatogenesis. The mechanisms of this process are largely unknown. Here, we demonstrate that Gas6 and its receptors, the Tyro 3 subfamily of receptor tyrosine kinases (RTKs; Tyro 3, Axl, and Mer), regulate the phagocytic function of Sertoli cells. The phagocytic ability of Sertoli cells increased by five times in the presence of Gas6 in serum-free medium when compared with controls. The Sertoli cells lacking Mer showed a 35% reduction in phagocytosis of apoptotic spermatogenic cells when compared with wild-type (WT) controls, whereas the Sertoli cells lacking Tyro 3 or Axl exhibited phagocytic activity comparable with the controls. Notably, the Sertoli cells lacking all three members of the Tyro 3 RTK subfamily showed a dramatic decrease in phagocytic ability of 7.6-fold when compared with WT Sertoli cells. The deficiency in phagocytosis by the triple-mutant Sertoli cells was due to the deficit in binding of the Sertoli cells to apoptotic germ cells. These findings suggest that Mer is responsible for triggering phagocytosis of apoptotic spermatogenic cells by Sertoli cells and that Tyro 3, Axl, and Mer participate in recognizing and binding apoptotic germ cells by Sertoli cells in a redundant manner. Gas6 is a functional ligand of the Tyro 3 RTK subfamily in mediating phagocytic ability of Sertoli cells.

Free access

Dong Han, Xin-Yan Cao, Hui-Li Wang, Jing-Jing Li, Yan-Bo Wang, and Jing-He Tan

Although studies suggest that the low competence of oocytes from prepubertal animals is due to their insufficient cytoplasmic maturation and that FSH improves oocyte maturation possibly by retarding meiotic progression and allowing more time for cytoplasmic maturation, the mechanisms by which puberty and gonadotropins regulate meiotic progression require additional detailed studies. For the first time, we observed that while meiotic progression was significantly slower, the maturation-promoting factor (MPF) activity of oocytes was significantly higher in prepubertal than in adult mice. To resolve this contradiction, we specified the molecules regulating the MPF activity and their localization during oocyte maturation in prepubertal and adult mice primed with or without gonadotropins. Our tests using corresponding enzyme regulators suggested that while activities of protein kinase A were unaffected, the activity of adenylate cyclase (ADCY) and phosphodiesterase increased while cell division cycle 2 homolog A (CDC2A) decreased significantly after puberty. While most of the adult oocytes had CDC2A protein concentrated in the germinal vesicle (GV) region, the majority of prepubertal oocytes showed no nuclear concentration of CDC2A. Maximally priming mice with equine chorionic gonadotropin brought the above parameters of prepubertal oocytes close to those in adult oocytes. Together, the results suggest that puberty and gonadotropin control oocyte meiotic progression mainly by regulating the ADCY activity and the concentration of the activated MPF toward the GV region.

Free access

Hui Wang, Yansong Xue, Baolin Wang, Junxing Zhao, Xu Yan, Yan Huang, Min Du, and Mei-Jun Zhu

Accompanying the dramatic increase in maternal obesity, the incidence of type 1 diabetes (T1D) in children is also rapidly increasing. The objective of this study was to explore the effects of maternal obesity on the incidence of T1D in offspring using non-obese diabetic (NOD) mice, a common model for TID. Four-week-old female NOD mice were fed either a control diet (10% energy from fat, CON) or a high-fat diet (60% energy from fat) for 8 weeks before mating. Mice were maintained in their respective diets during pregnancy and lactation. All offspring mice were fed the CON to 16 weeks. Female offspring (16-week-old) born to obese dams showed more severe islet lymphocyte infiltration (major manifestation of insulitis) (P<0.01), concomitant with elevated nuclear factor kappa-light-chain-enhancer of activated B cells p65 signaling (P<0.01) and tumor necrosis factor alpha protein level (P<0.05) in the pancreas. In addition, maternal obesity resulted in impaired (P<0.05) glucose tolerance and lower (P<0.05) serum insulin levels in offspring. In conclusion, maternal obesity resulted in exacerbated insulitis and inflammation in the pancreas of NOD offspring mice, providing a possible explanation for the increased incidence of T1D in children.

Free access

Kuan-Hao Tsui, Peng-Hui Wang, Li-Te Lin, and Chia-Jung Li

Because ovarian granulosa cells are essential for oocyte maturation and development, we validated human granulosa HO23 cells to evaluate the ability of the DHEA to prevent cell death after starvation. The present study was aimed to investigate whether DHEA could protect against starvation-induced apoptosis and necroptosis in human oocyte granulosa HO23 cells. The starvation was induced by treatment of serum-free (SF) medium for 4 h in vitro. Starvation-induced mitochondrial depolarization, cytochrome c release and caspase-3 activation were largely prevented by DHEA in HO23 cells. We found that treatment with DHEA can restore starvation-induced reactive oxygen species (ROS) generation and mitochondrial membrane potential imbalance. In addition, treatment of DHEA prevents cell death via upregulation of cytochrome c and downregulation of BAX in mitochondria. Most importantly, DHEA is ameliorated to mitochondrial function mediated through the decrease in mitochondrial ROS, maintained mitochondrial morphology, and enhancing the ability of cell proliferation and ROS scavenging. Our present data strongly indicate that DHEA reduces programmed cell death (apoptosis and necroptosis) in granulosa HO23 cells through multiple interactions with the mitochondrion-dependent programmed cell death pathway. Taken together, our data suggest that the presence of DHEA could be beneficial to protect human oocyte granulosa HO23 cells under in vitro culture conditions during various assisted reproductive technology (ART) programs.

Free Chinese abstract: A Chinese translation of this abstract is freely available at

Free access

Xiu Shi, Wei Xu, Hui-Hua Dai, Ying Sun, and Xiu-Li Wang

To compare the expression patterns of steroid receptor coactivators (SRCs) and steroid-induced stromal cell-derived factor 1 (CXCL12 (SDF1)) in normal and ectopic endometrium and to explore the roles of NCOA1 (SRC1) and NCOA2 (SRC2) in the steroid-induced CXCL12 expression in normal and ectopic endometrial stromal cells (ESCs). The NCOA1, NCOA2, NCOA3 (SRC3), and CXCL12 (SDF1)α mRNA levels in normal and ectopic endometrium were analyzed by quantitative real-time PCR. Steroid-induced CXCL12 expression was detected by the ELISA method and the chemotactic activity of conditioned supernatant to monocyte was assessed by the Boyden chamber method before and after the silencing of NCOA1 or NCOA2 with siRNA in normal and ectopic ESCs. The expression of NCOA1 and CXCL12 in ectopic endometrium was significantly greater than that in normal endometrium in the secretory phase. Progesterone (P4) was able to significantly inhibit estradiol (E2)-stimulated CXCL12 expression in normal and ectopic ESCs. The inhibitory rate of P4 in ectopic ESCs at 72 and 96 h was significantly lower than that in normal ESCs. Silencing of NCOA1 but not NCOA2 significantly reduced the E2-induced CXCL12 expression in normal and ectopic ESCs. The ability of P4 to inhibit E2-induced CXCL12 expression and monocyte chemotaxis in normal and ectopic ESCs was significantly attenuated when NCOA2 was silenced. NCOA1 plays a necessary role in E2-induced CXCL12 expression and NCOA2 is required for P4 to inhibit the E2-induced CXCL12 production in normal and ectopic endometrium.

Free access

Yongmei Chen, Huizhen Wang, Nan Qi, Hui Wu, Weipeng Xiong, Jing Ma, Qingxian Lu, and Daishu Han

Mice lacking TYRO3, AXL and MER (TAM) receptor tyrosine kinases (RTKs) are male sterile. The mechanism of TAM RTKs in regulating male fertility remains unknown. In this study, we analyzed in more detail the testicular phenotype of TAM triple mutant (TAM−/−) mice with an effort to understand the mechanism. We demonstrate that the three TAM RTKs cooperatively regulate male fertility, and MER appears to be more important than AXL and TYRO3. TAM−/− testes showed a progressive loss of germ cells from elongated spermatids to spermatogonia. Young adult TAM−/− mice exhibited oligo-astheno-teratozoospermia and various morphological malformations of sperm cells. As the mice aged, the germ cells were eventually depleted from the seminiferous tubules. Furthermore, we found that TAM−/− Sertoli cells have an impaired phagocytic activity and a large number of differentially expressed genes compared to wild-type controls. By contrast, the function of Leydig cells was not apparently affected by the mutation of TAM RTKs. Therefore, we conclude that the suboptimal function of Sertoli cells leads to the impaired spermatogenesis in TAM−/− mice. The results provide novel insight into the mechanism of TAM RTKs in regulating male fertility.

Free access

Cai-Xia Yang, Zhao-Hui Kou, Kai Wang, Yan Jiang, Wen-Wei Mao, Qing-Yuan Sun, Hui-Zhen Sheng, and Da-Yuan Chen

In cloned animals where somatic cell nuclei and oocytes are from the same or closely related species, the mitochondrial DNA (mtDNA) of the oocyte is dominantly inherited. However, in nuclear transfer (NT) embryos where nuclear donor and oocyte are from two distantly related species, the distribution of the mtDNA species is not known. Here we determined the levels of macaque and rabbit mtDNAs in macaque embryos reprogrammed by rabbit oocytes. Quantification using a real-time PCR method showed that both macaque and rabbit mtDNAs coexist in NT embryos at all preimplantation stages, with maternal mtDNA being dominant. Single NT embryos at the 1-cell stage immediately after fusion contained 2.6 × 104 copies of macaque mtDNA and 1.3 × 106 copies of rabbit mtDNA. Copy numbers of both mtDNA species did not change significantly from the 1-cell to the morula stages. In the single blastocyst, however, the number of rabbit mtDNA increased dramatically while macaque mtDNA decreased. The ratio of nuclear donor mtDNA to oocyte mtDNA dropped sharply from 2% at the 1-cell stage to 0.011% at the blastocyst stage. These results suggest that maternal mtDNA replicates after the morula stage.

Restricted access

Xue-Yun Qin, Hui-Hui Shen, Xin-Yan Zhang, Xing Zhang, Feng Xie, Wen-Jun Wang, Yu Xiong, Jie Mei, and Ming-Qing Li

Infiltration and residence of decidual macrophage (dM) are of great significance to pregnancy maintenance for its role in angiogenesis, placental development and inducing immune tolerance. Besides, hypoxia has now been acknowledged as an important biological event at maternal-fetal interface in the first trimester. However, whether and how hypoxia regulates biofunctions of dM remains elusive. Herein, we observed increased expression of C-C motif chemokine ligand 2 (CCL2) and residence of macrophages in decidua when comparing to secretory-phase endometrium. Moreover, hypoxia treatment on stromal cells improved migration and adhesion of dM. Mechanistically, these effects might be mediated by upregulated CCL2 and adhesion molecules (especially ICAM2 and ICAM5) on stromal cells in the presence of endogenous vascular endothelial growth factor-A (VEGFA) in hypoxia. These findings were also verified by recombinant VEGFA and indirect coculture, indicating the interaction between stromal cells and dM in hypoxia condition may facilitate dM recruitment and residence. In conclusion, VEGFA derived from hypoxic environment may manipulate CCL2/CCR2 and adhesion molecules to enhance the interactions between dM and stromal cells and thus contribute to the enrichment of macrophages in decidua during early normal pregnancy.

Free access

Jia-Wei Shi, Hui-Li Yang, Zhen-Zhen Lai, Hui-Hui Shen, Xue-Yun Qin, Xue-Min Qiu, Yan Wang, Jiang-Nan Wu, and Ming-Qing Li

The survival and development of a semi-allogeneic fetus during pregnancy require the involvement of decidual stromal cells (DSCs), a series of cytokines and immune cells. Insulin-like growth factor 1 (IGF1) is a low molecular weight peptide hormone with similar metabolic activity and structural characteristics of proinsulin, which exerts its biological effects by binding with its receptor. Emerging evidence has shown that IGF1 is expressed at the maternal–fetal interface, but its special role in establishment and maintenance of pregnancy is largely unknown. Here, we found that the expression of IGF1 in the decidua was significantly higher than that in the endometrium. Additionally, decidua from women with normal pregnancy had high levels of IGF1 compared with that from women with unexplained recurrent spontaneous miscarriage. Estrogen and progesterone led to the increase of IGF1 in DSCs through upregulating the expression of WISP2. Recombinant IGF1 or DSCs-derived IGF1 increased the survival, reduced the apoptosis of DSCs, and downregulated the cytotoxicity of decidual NK cells (dNK) through interaction with IGF1R. These data suggest that estrogen and progesterone stimulate the growth of DSCs and impair the cytotoxicity of dNK possibly by the WISP2/IGF1 signaling pathway.