Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Hui-Li Yang x
  • All content x
Clear All Modify Search
Free access

Hui-Li Yang, Wen-Jie Zhou, Kai-Kai Chang, Jie Mei, Li-Qing Huang, Ming-Yan Wang, Yi Meng, Si-Yao Ha, Da-Jin Li, and Ming-Qing Li

The dysfunction of NK cells in women with endometriosis (EMS) contributes to the immune escape of menstrual endometrial fragments refluxed into the peritoneal cavity. The reciprocal communications between endometrial stromal cells (ESCs) and lymphocytes facilitate the development of EMS. However, the mechanism of these communications on cytotoxicity of natural killer (NK) cells in endometriotic milieus is still largely unknown. To imitate the local immune microenvironment, the co-culture systems of ESCs from patients with EMS and monocyte-derived macrophages or of ESCs, macrophages and NK cells were constructed. The cytokine levels in the co-culture unit were evaluated by ELISA. The expression of functional molecules in NK cells was detected by flow cytometry (FCM). The NK cell behaviors in vitro were analyzed by cell counting kit-8 and cytotoxic activation assays. After incubation with ESCs and macrophages, the expression of CD16, NKG2D, perforin and IFN-γ, viability and cytotoxicity of NK cells were significantly downregulated. The secretion of interleukin (IL)-1β, IL-10 and transforming growth factor (TGF)-β in the co-culture system of ESCs and macrophages was increased. Exposure with anti-IL-10 receptor β neutralizing antibody (αhIL-10Rβ) or αTGF-β could partly reverse these effects of ESCs and macrophages on NK cells in vitro. These results suggest that the interaction between macrophages and ESCs downregulates cytotoxicity of NK cells possibly by stimulating the secretion of IL-10 and TGF-β, and may further trigger the immune escape of ectopic fragments and promote the occurrence and the development of EMS.

Free access

Xuan-Tong Liu, Hui-Ting Sun, Zhong-Fang Zhang, Ru-Xia Shi, Li-Bing Liu, Jia-Jun Yu, Wen-Jie Zhou, Chun-Jie Gu, Shao-Liang Yang, Yu-Kai Liu, Hui-Li Yang, Feng-Xuan Xu, and Ming-Qing Li

It has been reported that the impaired cytotoxicity of natural killer (NK) cells and abnormal cytokines that are changed by the interaction between ectopic endometrial cells and immune cells is indispensable for the initiation and development of endometriosis (EMS). However, the mechanism of NK cells dysfunction in EMS remains largely unclear. Here, we found that NK cells in peritoneal fluid from women with EMS highly expressed indoleamine 2,3-dioxygenase (IDO). Furthermore, IDO+NK cells possessed lower NKp46 and NKG2D but higher IL-10 than that of IDO-NK. Co-culture with endometrial stromal cells (nESCs) from healthy control or ectopic ESCs (eESCs) from women with EMS led to a significant increase in the IDO level in NK cells from peripheral blood, particularly eESCs, and an anti-TGF-β neutralizing antibody suppressed these effects in vitro. NK cells co-cultured with ESC more preferentially inhibited the viability of nESCs than eESCs did, and pretreating with 1-methyl-tryptophan (1-MT), an IDO inhibitor, reversed the inhibitory effect of NK cells on eESC viability. These data suggest that ESCs induce IDO+NK cells differentiation partly by TGF-β and that IDO further restricts the cytotoxicity of NK cells in response to eESCs, which provides a potential therapeutic strategy for EMS patients, particularly those with a high number of impaired cytotoxic IDO+NK cells.

Restricted access

Jia-Wei Shi, Hui-Li Yang, Zhen-Zhen Lai, Hui-Hui Shen, Xue-Yun Qin, Xue-Min Qiu, Yan Wang, Jiang-Nan Wu, and Ming-Qing Li

The survival and development of a semi-allogeneic fetus during pregnancy require the involvement of decidual stromal cells (DSCs), a series of cytokines and immune cells. Insulin-like growth factor 1 (IGF1) is a low molecular weight peptide hormone with similar metabolic activity and structural characteristics of proinsulin, which exerts its biological effects by binding with its receptor. Emerging evidence has shown that IGF1 is expressed at the maternal–fetal interface, but its special role in establishment and maintenance of pregnancy is largely unknown. Here, we found that the expression of IGF1 in the decidua was significantly higher than that in the endometrium. Additionally, decidua from women with normal pregnancy had high levels of IGF1 compared with that from women with unexplained recurrent spontaneous miscarriage. Estrogen and progesterone led to the increase of IGF1 in DSCs through upregulating the expression of WISP2. Recombinant IGF1 or DSCs-derived IGF1 increased the survival, reduced the apoptosis of DSCs, and downregulated the cytotoxicity of decidual NK cells (dNK) through interaction with IGF1R. These data suggest that estrogen and progesterone stimulate the growth of DSCs and impair the cytotoxicity of dNK possibly by the WISP2/IGF1 signaling pathway.

Restricted access

Tao Yu, Shuai Lin, Rui Xu, Tian-Xi Du, Yang Li, Hui Gao, Hong-Lu Diao, and Xiu-Hong Zhang

Embryo implantation is a crucial step for the successful establishment of mammalian pregnancy. Cyclophilin A (CYPA) is a ubiquitously expressed intracellular protein and is secreted in response to inflammatory stimuli to regulate diverse cellular functions. However, there are currently no reports about the role of CYPA in embryo implantation. Here, we examine the expression pattern of CYPA during mouse early pregnancy and explore the potential role of CYPA during implantation. CYPA is expressed in the subluminal stroma surrounding the implanting blastocyst on day 5 of pregnancy, but not at inter-implantation sites. In ovariectomized mice, estrogen and progesterone significantly stimulate CYPA expression. When pregnant mice are injected intraperitoneally with CYPA inhibitor, the numbers of implantation sites are significantly reduced. Using an in vitro stromal cell culture system, Ppia siRNA knockdown of CYPA and CYPA-specific inhibitor treatment partially inhibits levels of CD147, MMP3 and MMP9. Decreased CYPA expression also significantly inhibits Stat3 activity and expands estrogen responsiveness. Taken together, CYPA may play an important role during mouse embryo implantation.

Free access

Wen-Lin Chang, Qing Yang, Hui Zhang, Hai-Yan Lin, Zhi Zhou, Xiaoyin Lu, Cheng Zhu, Li-Qun Xue, and Hongmei Wang

Placenta-specific protein 1 (PLAC1), a placenta-specific gene, is known to be involved in the development of placenta in both humans and mice. However, the precise role of PLAC1 in placental trophoblast function remains unclear. In this study, the localization of PLAC1 in human placental tissues and its physiological significance in trophoblast invasion and migration are investigated by technical studies including real-time RT-PCR, in situ hybridization, immunohistochemistry, and functional studies by utilizing cell invasion and migration assays in the trophoblast cell line HTR8/SVneo as well as the primary inducing extravillous trophoblasts (EVTs). The results show that PLAC1 is mainly detected in the trophoblast columns and syncytiotrophoblast of the first-trimester human placental villi, as well as in the EVTs that invade into the maternal decidua. Knockdown of PLAC1 by RNA interference significantly suppresses the invasion and migration of HTR8/SVneo cells and shortens the distance of the outgrowth of the induced EVTs from the cytotrophoblast column of the explants. All the above data suggests that PLAC1 plays an important role in human placental trophoblast invasion and migration.

Free access

Xue-Min Qiu, Zhen-Zhen Lai, Si-Yao Ha, Hui-Li Yang, Li-Bing Liu, Yan Wang, Jia-Wei Shi, Lu-Yu Ruan, Jiang-Feng Ye, Jiang-Nan Wu, Qiang Fu, Xiao-Fang Yi, Kai-Kai Chang, and Ming-Qing Li

Immune cells and cytokines have important roles in the pathogenesis of endometriosis. However, the production and role of cytokines of T helper type 1 (Th1) and Th2 cells in the progress of endometriosis have remained to be fully elucidated. The present study reported that the interferon (IFN)-γ levels and the percentage of IFN-γ+CD4+ cells were significantly increased in the peritoneal fluid (PF) at the early stage and maintained at a higher level at the advanced stage of endometriosis; furthermore, interleukin (IL)-10 and IL-10+CD4+ cells were elevated in the advanced stage of endometriosis. In addition, IL-2 levels in the PF at the advanced stage of endometriosis were elevated and negatively associated with IFN-γ expression. In a co-culture system of ectopic endometrial stromal cells (ESCs) and macrophages, elevated IL-2 was observed, and treatment with cytokines IL-2 and transforming growth factor-β led to upregulation of the ratio of IL-2+ macrophages. IL-27-overexpressing ESCs and macrophages were able to induce a higher ratio of IL-10+CD4+ T cells. Blocking of IL-2 with anti-IL-2 neutralizing antibody led to upregulation of the ratio of IFN-γ+CD4+ T cells in the co-culture system in vitro. Recombinant human IL-10 and IFN-γ promoted the viability, invasiveness and transcription levels of matrix metalloproteinase (MMP)2, MMP9, and prostaglandin-endoperoxide synthase 2 of ESCs, particularly combined treatment with IL-10 and IFN-γ. These results suggest that IL-2 and IL-27 synergistically promote the growth and invasion of ESCs by modulating the balance of IFN-γ and IL-10 and contribute to the progress of endometriosis.

Free access

Jun Shao, Bing Zhang, Jia-Jun Yu, Chun-Yan Wei, Wen-Jie Zhou, Kai-Kai Chang, Hui-Li Yang, Li-Ping Jin, Xiao-Yong Zhu, and Ming-Qing Li

Macrophages play an important role in the origin and development of endometriosis. Estrogen promoted the growth of decidual stromal cells (DSCs) by downregulating the level of interleukin (IL)-24. The aim of this study was to clarify the role and mechanism of IL-24 and its receptors in the regulation of biological functions of endometrial stromal cells (ESCs) during endometriosis. The level of IL-24 and its receptors in endometrium was measured by immunohistochemistry. In vitro analysis was used to measure the level of IL-24 and receptors and the biological behaviors of ESCs. Here, we found that the expression of IL-24 and its receptors (IL-20R1 and IL-20R2) in control endometrium was significantly higher than that in eutopic and ectopic endometrium of women with endometriosis. Recombinant human IL-24 (rhIL-24) significantly inhibited the viability of ESCs in a dosage-dependent manner. Conversely, blocking IL-24 with anti-IL-24 neutralizing antibody promoted ESCs viability. In addition, rhIL-24 could downregulate the invasiveness of ESCs in vitro. After co-culture, macrophages markedly reduced the expression of IL-24 and IL-20R1 in ESCs, but not IL-22R1. Moreover, macrophages significantly restricted the inhibitory effect of IL-24 on the viability, invasion, the proliferation relative gene Ki-67, proliferating cell nuclear antigen (PCNA) and cyclooxygenase2 (COX-2), and the stimulatory effect on the tumor metastasis suppressor gene CD82 in ESCs. These results indicate that the abnormally low level of IL-24 in ESCs possibly induced by macrophages may lead to the enhancement of ESCs’ proliferation and invasiveness and contribute to the development of endometriosis.

Restricted access

Chao Du, John S Davis, Chao Chen, Zan Li, Ye Cao, Hui Sun, Bao-Shun Shao, Yu-Xin Lin, Yong-Sheng Wang, Li-Guo Yang, and Guo-Hua Hua

Fibroblast growth factor 2 (FGF2), a member of FGF family, binds with FGF receptors (FGFR) to initiate biological functions in various somatic cells. However, little is known regarding the role of FGF2/FGFR on oocyte meiosis. In this study, we investigated expression patterns and functions of FGF2/FGFR during in vitro maturation (IVM) of mouse cumulus-oocyte complexes (COCs). Among four FGFRs, Ffgr1 was the most abundant in COCs. The transcripts for Fgf2 and Ffgr1 in COCs increased during IVM. Ffgr1 was present in oocytes and cumulus cells, while Fgf2 was present in only cumulus cells. Treatment of COCs with the selective FGFR inhibitor SU5402 blocked oocyte meiotic progression and downregulated expression of Bmp15 and Gdf9. In contrast, supplement of FGF2 promoted oocyte meiotic progression and upregulated Bmp15 and Gdf9 expression. Inhibition of FGFR with SU5402 reduced cumulus expansion and expressions of Ptx3, Has2 and Tnfaip6. Treatment with FGF2 increased Ptx3 and Has2 expression. Inhibition of FGFR had no effect on meiotic progression of denuded oocytes (DOs). However, co-culture of DOs with COCs or supplementation with FGF2 promoted meiotic progression of DOs. Inhibition of FGF2/FGFR signaling also downregulated Ffgr1 expression, while supplemental FGF2 upregulated Fgfr1 expression. Furthermore, inhibition of FGFR in COCs interrupted the c-Mos/MAPK pathway and maturation-promoting factor (MPF), as indicated by downregulation of oocyte c-mos and Ccnb1 transcripts, respectively. Overall, this study suggests that FGF2 produced by cumulus cells, activates a FGF2/FGFR autocrine/paracrine loop within COCs to regulate cumulus expansion and oocyte meiosis. These findings reveal a novel role for FGF2/FGFR signaling during in vitro maturation of COCs.