Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Huihui Yu x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

Tengteng Li, Jiajia Fei, Huihui Yu, Xingxing Wang, Dan Li, and Zongzhi Yin

The mechanisms underlying pre-labor uterine quiescence and uterine atony during overdistention are unclear. TREK1 (a two-pore domain potassium channel) and hypoxia-inducible factor-1α (HIF-1α) are activated by mechanical stretch, and their expression is upregulated by decreased uterine contractility. HIF-1α is a nuclear factor which regulates numerous target proteins, but whether it regulates TREK1 during uterine stretch to cause uterine quiescence and/or atony is unclear. We investigated uterine contractility at different gestational stages in rats, as well as in non-pregnant uteri, which were induced by prolonged stretching and hypoxia. We also assessed the effects of incubating the uteri with or without echinomycin or L-methionine. Moreover, we analyzed HIF-1α and TREK1 expression levels in each group, as well as at various gestational stages of pregnant human uteri. We found that contractility was significantly decreased in pregnant uteri when compared with non-pregnant uteri, and this decrease was associated with increases in HIF-1α and TREK1 expression levels. HIF-1α and TREK1 expression levels in human uteri increased with the gestational length. Decreased uterine contractility and increased HIF-1α and TREK1 expression levels were also observed in non-pregnant rat uteri under 8 g of stretching tension or hypoxia. Inhibition of hypoxia with echinomycin restored normal uterine contractility, while HIF-1α and TREK1 protein expression remained reduced. TREK1 inhibition with L-methionine also restored uterine contractility under tension or hypoxia. In conclusion, we demonstrated that prolonged stretching induces myometrial hypoxia, increases TREK1 expression, and relaxes the myometrium, which may contribute to uterine quiescence and atony.

Restricted access

Xue-Yun Qin, Hui-Hui Shen, Xin-Yan Zhang, Xing Zhang, Feng Xie, Wen-Jun Wang, Yu Xiong, Jie Mei, and Ming-Qing Li

In brief

Hypoxia is vital for the establishment of the maternal–fetal interface during early pregnancy. This study shows that decidual macrophages (dMφ) could be recruited and reside in decidua under the regulation of hypoxia/VEGFA-CCL2 axis.


Infiltration and residence of decidual macrophages (dMφ) are of great significance to pregnancy maintenance for their role in angiogenesis, placental development, and inducing immune tolerance. Besides, hypoxia has now been acknowledged as an important biological event at maternal–fetal interface in the first trimester. However, whether and how hypoxia regulates biofunctions of dMφ remain elusive. Herein, we observed increased expression of C–C motif chemokine ligand 2 (CCL2) and residence of macrophages in decidua compared to secretory-phase endometrium. Moreover, hypoxia treatment on stromal cells improved the migration and adhesion of dMφ. Mechanistically, these effects might be mediated by upregulated CCL2 and adhesion molecules (especially ICAM2 and ICAM5) on stromal cells in the presence of endogenous vascular endothelial growth factor-A (VEGFA) in hypoxia. These findings were also verified by recombinant VEGFA and indirect coculture, indicating that the interaction between stromal cells and dMφ in hypoxia condition may facilitate dMφ recruitment and residence. In conclusion, VEGFA derived from a hypoxic environment may manipulate CCL2/CCR2 and adhesion molecules to enhance the interactions between dMφ and stromal cells and thus contribute to the enrichment of macrophages in decidua early during normal pregnancy.